1 | // Copyright 2005, Google Inc.
|
---|
2 | // All rights reserved.
|
---|
3 | //
|
---|
4 | // Redistribution and use in source and binary forms, with or without
|
---|
5 | // modification, are permitted provided that the following conditions are
|
---|
6 | // met:
|
---|
7 | //
|
---|
8 | // * Redistributions of source code must retain the above copyright
|
---|
9 | // notice, this list of conditions and the following disclaimer.
|
---|
10 | // * Redistributions in binary form must reproduce the above
|
---|
11 | // copyright notice, this list of conditions and the following disclaimer
|
---|
12 | // in the documentation and/or other materials provided with the
|
---|
13 | // distribution.
|
---|
14 | // * Neither the name of Google Inc. nor the names of its
|
---|
15 | // contributors may be used to endorse or promote products derived from
|
---|
16 | // this software without specific prior written permission.
|
---|
17 | //
|
---|
18 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
---|
19 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
---|
20 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
---|
21 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
---|
22 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
---|
23 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
---|
24 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
---|
25 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
---|
26 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
---|
27 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
---|
28 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
---|
29 | //
|
---|
30 | // Authors: wan@google.com (Zhanyong Wan), eefacm@gmail.com (Sean Mcafee)
|
---|
31 | //
|
---|
32 | // The Google C++ Testing Framework (Google Test)
|
---|
33 | //
|
---|
34 | // This header file declares functions and macros used internally by
|
---|
35 | // Google Test. They are subject to change without notice.
|
---|
36 |
|
---|
37 | #ifndef GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
|
---|
38 | #define GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
|
---|
39 |
|
---|
40 | #include "gtest/internal/gtest-port.h"
|
---|
41 |
|
---|
42 | #if GTEST_OS_LINUX
|
---|
43 | # include <stdlib.h>
|
---|
44 | # include <sys/types.h>
|
---|
45 | # include <sys/wait.h>
|
---|
46 | # include <unistd.h>
|
---|
47 | #endif // GTEST_OS_LINUX
|
---|
48 |
|
---|
49 | #if GTEST_HAS_EXCEPTIONS
|
---|
50 | # include <stdexcept>
|
---|
51 | #endif
|
---|
52 |
|
---|
53 | #include <ctype.h>
|
---|
54 | #include <float.h>
|
---|
55 | #include <string.h>
|
---|
56 | #include <iomanip>
|
---|
57 | #include <limits>
|
---|
58 | #include <set>
|
---|
59 |
|
---|
60 | #include "gtest/gtest-message.h"
|
---|
61 | #include "gtest/internal/gtest-string.h"
|
---|
62 | #include "gtest/internal/gtest-filepath.h"
|
---|
63 | #include "gtest/internal/gtest-type-util.h"
|
---|
64 |
|
---|
65 | // Due to C++ preprocessor weirdness, we need double indirection to
|
---|
66 | // concatenate two tokens when one of them is __LINE__. Writing
|
---|
67 | //
|
---|
68 | // foo ## __LINE__
|
---|
69 | //
|
---|
70 | // will result in the token foo__LINE__, instead of foo followed by
|
---|
71 | // the current line number. For more details, see
|
---|
72 | // http://www.parashift.com/c++-faq-lite/misc-technical-issues.html#faq-39.6
|
---|
73 | #define GTEST_CONCAT_TOKEN_(foo, bar) GTEST_CONCAT_TOKEN_IMPL_(foo, bar)
|
---|
74 | #define GTEST_CONCAT_TOKEN_IMPL_(foo, bar) foo ## bar
|
---|
75 |
|
---|
76 | class ProtocolMessage;
|
---|
77 | namespace proto2 { class Message; }
|
---|
78 |
|
---|
79 | namespace testing {
|
---|
80 |
|
---|
81 | // Forward declarations.
|
---|
82 |
|
---|
83 | class AssertionResult; // Result of an assertion.
|
---|
84 | class Message; // Represents a failure message.
|
---|
85 | class Test; // Represents a test.
|
---|
86 | class TestInfo; // Information about a test.
|
---|
87 | class TestPartResult; // Result of a test part.
|
---|
88 | class UnitTest; // A collection of test cases.
|
---|
89 |
|
---|
90 | template <typename T>
|
---|
91 | ::std::string PrintToString(const T& value);
|
---|
92 |
|
---|
93 | namespace internal {
|
---|
94 |
|
---|
95 | struct TraceInfo; // Information about a trace point.
|
---|
96 | class ScopedTrace; // Implements scoped trace.
|
---|
97 | class TestInfoImpl; // Opaque implementation of TestInfo
|
---|
98 | class UnitTestImpl; // Opaque implementation of UnitTest
|
---|
99 |
|
---|
100 | // How many times InitGoogleTest() has been called.
|
---|
101 | GTEST_API_ extern int g_init_gtest_count;
|
---|
102 |
|
---|
103 | // The text used in failure messages to indicate the start of the
|
---|
104 | // stack trace.
|
---|
105 | GTEST_API_ extern const char kStackTraceMarker[];
|
---|
106 |
|
---|
107 | // Two overloaded helpers for checking at compile time whether an
|
---|
108 | // expression is a null pointer literal (i.e. NULL or any 0-valued
|
---|
109 | // compile-time integral constant). Their return values have
|
---|
110 | // different sizes, so we can use sizeof() to test which version is
|
---|
111 | // picked by the compiler. These helpers have no implementations, as
|
---|
112 | // we only need their signatures.
|
---|
113 | //
|
---|
114 | // Given IsNullLiteralHelper(x), the compiler will pick the first
|
---|
115 | // version if x can be implicitly converted to Secret*, and pick the
|
---|
116 | // second version otherwise. Since Secret is a secret and incomplete
|
---|
117 | // type, the only expression a user can write that has type Secret* is
|
---|
118 | // a null pointer literal. Therefore, we know that x is a null
|
---|
119 | // pointer literal if and only if the first version is picked by the
|
---|
120 | // compiler.
|
---|
121 | char IsNullLiteralHelper(Secret* p);
|
---|
122 | char (&IsNullLiteralHelper(...))[2]; // NOLINT
|
---|
123 |
|
---|
124 | // A compile-time bool constant that is true if and only if x is a
|
---|
125 | // null pointer literal (i.e. NULL or any 0-valued compile-time
|
---|
126 | // integral constant).
|
---|
127 | #ifdef GTEST_ELLIPSIS_NEEDS_POD_
|
---|
128 | // We lose support for NULL detection where the compiler doesn't like
|
---|
129 | // passing non-POD classes through ellipsis (...).
|
---|
130 | # define GTEST_IS_NULL_LITERAL_(x) false
|
---|
131 | #else
|
---|
132 | # define GTEST_IS_NULL_LITERAL_(x) \
|
---|
133 | (sizeof(::testing::internal::IsNullLiteralHelper(x)) == 1)
|
---|
134 | #endif // GTEST_ELLIPSIS_NEEDS_POD_
|
---|
135 |
|
---|
136 | // Appends the user-supplied message to the Google-Test-generated message.
|
---|
137 | GTEST_API_ std::string AppendUserMessage(
|
---|
138 | const std::string& gtest_msg, const Message& user_msg);
|
---|
139 |
|
---|
140 | #if GTEST_HAS_EXCEPTIONS
|
---|
141 |
|
---|
142 | // This exception is thrown by (and only by) a failed Google Test
|
---|
143 | // assertion when GTEST_FLAG(throw_on_failure) is true (if exceptions
|
---|
144 | // are enabled). We derive it from std::runtime_error, which is for
|
---|
145 | // errors presumably detectable only at run time. Since
|
---|
146 | // std::runtime_error inherits from std::exception, many testing
|
---|
147 | // frameworks know how to extract and print the message inside it.
|
---|
148 | class GTEST_API_ GoogleTestFailureException : public ::std::runtime_error {
|
---|
149 | public:
|
---|
150 | explicit GoogleTestFailureException(const TestPartResult& failure);
|
---|
151 | };
|
---|
152 |
|
---|
153 | #endif // GTEST_HAS_EXCEPTIONS
|
---|
154 |
|
---|
155 | // A helper class for creating scoped traces in user programs.
|
---|
156 | class GTEST_API_ ScopedTrace {
|
---|
157 | public:
|
---|
158 | // The c'tor pushes the given source file location and message onto
|
---|
159 | // a trace stack maintained by Google Test.
|
---|
160 | ScopedTrace(const char* file, int line, const Message& message);
|
---|
161 |
|
---|
162 | // The d'tor pops the info pushed by the c'tor.
|
---|
163 | //
|
---|
164 | // Note that the d'tor is not virtual in order to be efficient.
|
---|
165 | // Don't inherit from ScopedTrace!
|
---|
166 | ~ScopedTrace();
|
---|
167 |
|
---|
168 | private:
|
---|
169 | GTEST_DISALLOW_COPY_AND_ASSIGN_(ScopedTrace);
|
---|
170 | } GTEST_ATTRIBUTE_UNUSED_; // A ScopedTrace object does its job in its
|
---|
171 | // c'tor and d'tor. Therefore it doesn't
|
---|
172 | // need to be used otherwise.
|
---|
173 |
|
---|
174 | // Constructs and returns the message for an equality assertion
|
---|
175 | // (e.g. ASSERT_EQ, EXPECT_STREQ, etc) failure.
|
---|
176 | //
|
---|
177 | // The first four parameters are the expressions used in the assertion
|
---|
178 | // and their values, as strings. For example, for ASSERT_EQ(foo, bar)
|
---|
179 | // where foo is 5 and bar is 6, we have:
|
---|
180 | //
|
---|
181 | // expected_expression: "foo"
|
---|
182 | // actual_expression: "bar"
|
---|
183 | // expected_value: "5"
|
---|
184 | // actual_value: "6"
|
---|
185 | //
|
---|
186 | // The ignoring_case parameter is true iff the assertion is a
|
---|
187 | // *_STRCASEEQ*. When it's true, the string " (ignoring case)" will
|
---|
188 | // be inserted into the message.
|
---|
189 | GTEST_API_ AssertionResult EqFailure(const char* expected_expression,
|
---|
190 | const char* actual_expression,
|
---|
191 | const std::string& expected_value,
|
---|
192 | const std::string& actual_value,
|
---|
193 | bool ignoring_case);
|
---|
194 |
|
---|
195 | // Constructs a failure message for Boolean assertions such as EXPECT_TRUE.
|
---|
196 | GTEST_API_ std::string GetBoolAssertionFailureMessage(
|
---|
197 | const AssertionResult& assertion_result,
|
---|
198 | const char* expression_text,
|
---|
199 | const char* actual_predicate_value,
|
---|
200 | const char* expected_predicate_value);
|
---|
201 |
|
---|
202 | // This template class represents an IEEE floating-point number
|
---|
203 | // (either single-precision or double-precision, depending on the
|
---|
204 | // template parameters).
|
---|
205 | //
|
---|
206 | // The purpose of this class is to do more sophisticated number
|
---|
207 | // comparison. (Due to round-off error, etc, it's very unlikely that
|
---|
208 | // two floating-points will be equal exactly. Hence a naive
|
---|
209 | // comparison by the == operation often doesn't work.)
|
---|
210 | //
|
---|
211 | // Format of IEEE floating-point:
|
---|
212 | //
|
---|
213 | // The most-significant bit being the leftmost, an IEEE
|
---|
214 | // floating-point looks like
|
---|
215 | //
|
---|
216 | // sign_bit exponent_bits fraction_bits
|
---|
217 | //
|
---|
218 | // Here, sign_bit is a single bit that designates the sign of the
|
---|
219 | // number.
|
---|
220 | //
|
---|
221 | // For float, there are 8 exponent bits and 23 fraction bits.
|
---|
222 | //
|
---|
223 | // For double, there are 11 exponent bits and 52 fraction bits.
|
---|
224 | //
|
---|
225 | // More details can be found at
|
---|
226 | // http://en.wikipedia.org/wiki/IEEE_floating-point_standard.
|
---|
227 | //
|
---|
228 | // Template parameter:
|
---|
229 | //
|
---|
230 | // RawType: the raw floating-point type (either float or double)
|
---|
231 | template <typename RawType>
|
---|
232 | class FloatingPoint {
|
---|
233 | public:
|
---|
234 | // Defines the unsigned integer type that has the same size as the
|
---|
235 | // floating point number.
|
---|
236 | typedef typename TypeWithSize<sizeof(RawType)>::UInt Bits;
|
---|
237 |
|
---|
238 | // Constants.
|
---|
239 |
|
---|
240 | // # of bits in a number.
|
---|
241 | static const size_t kBitCount = 8*sizeof(RawType);
|
---|
242 |
|
---|
243 | // # of fraction bits in a number.
|
---|
244 | static const size_t kFractionBitCount =
|
---|
245 | std::numeric_limits<RawType>::digits - 1;
|
---|
246 |
|
---|
247 | // # of exponent bits in a number.
|
---|
248 | static const size_t kExponentBitCount = kBitCount - 1 - kFractionBitCount;
|
---|
249 |
|
---|
250 | // The mask for the sign bit.
|
---|
251 | static const Bits kSignBitMask = static_cast<Bits>(1) << (kBitCount - 1);
|
---|
252 |
|
---|
253 | // The mask for the fraction bits.
|
---|
254 | static const Bits kFractionBitMask =
|
---|
255 | ~static_cast<Bits>(0) >> (kExponentBitCount + 1);
|
---|
256 |
|
---|
257 | // The mask for the exponent bits.
|
---|
258 | static const Bits kExponentBitMask = ~(kSignBitMask | kFractionBitMask);
|
---|
259 |
|
---|
260 | // How many ULP's (Units in the Last Place) we want to tolerate when
|
---|
261 | // comparing two numbers. The larger the value, the more error we
|
---|
262 | // allow. A 0 value means that two numbers must be exactly the same
|
---|
263 | // to be considered equal.
|
---|
264 | //
|
---|
265 | // The maximum error of a single floating-point operation is 0.5
|
---|
266 | // units in the last place. On Intel CPU's, all floating-point
|
---|
267 | // calculations are done with 80-bit precision, while double has 64
|
---|
268 | // bits. Therefore, 4 should be enough for ordinary use.
|
---|
269 | //
|
---|
270 | // See the following article for more details on ULP:
|
---|
271 | // http://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/
|
---|
272 | static const size_t kMaxUlps = 4;
|
---|
273 |
|
---|
274 | // Constructs a FloatingPoint from a raw floating-point number.
|
---|
275 | //
|
---|
276 | // On an Intel CPU, passing a non-normalized NAN (Not a Number)
|
---|
277 | // around may change its bits, although the new value is guaranteed
|
---|
278 | // to be also a NAN. Therefore, don't expect this constructor to
|
---|
279 | // preserve the bits in x when x is a NAN.
|
---|
280 | explicit FloatingPoint(const RawType& x) { u_.value_ = x; }
|
---|
281 |
|
---|
282 | // Static methods
|
---|
283 |
|
---|
284 | // Reinterprets a bit pattern as a floating-point number.
|
---|
285 | //
|
---|
286 | // This function is needed to test the AlmostEquals() method.
|
---|
287 | static RawType ReinterpretBits(const Bits bits) {
|
---|
288 | FloatingPoint fp(0);
|
---|
289 | fp.u_.bits_ = bits;
|
---|
290 | return fp.u_.value_;
|
---|
291 | }
|
---|
292 |
|
---|
293 | // Returns the floating-point number that represent positive infinity.
|
---|
294 | static RawType Infinity() {
|
---|
295 | return ReinterpretBits(kExponentBitMask);
|
---|
296 | }
|
---|
297 |
|
---|
298 | // Returns the maximum representable finite floating-point number.
|
---|
299 | static RawType Max();
|
---|
300 |
|
---|
301 | // Non-static methods
|
---|
302 |
|
---|
303 | // Returns the bits that represents this number.
|
---|
304 | const Bits &bits() const { return u_.bits_; }
|
---|
305 |
|
---|
306 | // Returns the exponent bits of this number.
|
---|
307 | Bits exponent_bits() const { return kExponentBitMask & u_.bits_; }
|
---|
308 |
|
---|
309 | // Returns the fraction bits of this number.
|
---|
310 | Bits fraction_bits() const { return kFractionBitMask & u_.bits_; }
|
---|
311 |
|
---|
312 | // Returns the sign bit of this number.
|
---|
313 | Bits sign_bit() const { return kSignBitMask & u_.bits_; }
|
---|
314 |
|
---|
315 | // Returns true iff this is NAN (not a number).
|
---|
316 | bool is_nan() const {
|
---|
317 | // It's a NAN if the exponent bits are all ones and the fraction
|
---|
318 | // bits are not entirely zeros.
|
---|
319 | return (exponent_bits() == kExponentBitMask) && (fraction_bits() != 0);
|
---|
320 | }
|
---|
321 |
|
---|
322 | // Returns true iff this number is at most kMaxUlps ULP's away from
|
---|
323 | // rhs. In particular, this function:
|
---|
324 | //
|
---|
325 | // - returns false if either number is (or both are) NAN.
|
---|
326 | // - treats really large numbers as almost equal to infinity.
|
---|
327 | // - thinks +0.0 and -0.0 are 0 DLP's apart.
|
---|
328 | bool AlmostEquals(const FloatingPoint& rhs) const {
|
---|
329 | // The IEEE standard says that any comparison operation involving
|
---|
330 | // a NAN must return false.
|
---|
331 | if (is_nan() || rhs.is_nan()) return false;
|
---|
332 |
|
---|
333 | return DistanceBetweenSignAndMagnitudeNumbers(u_.bits_, rhs.u_.bits_)
|
---|
334 | <= kMaxUlps;
|
---|
335 | }
|
---|
336 |
|
---|
337 | private:
|
---|
338 | // The data type used to store the actual floating-point number.
|
---|
339 | union FloatingPointUnion {
|
---|
340 | RawType value_; // The raw floating-point number.
|
---|
341 | Bits bits_; // The bits that represent the number.
|
---|
342 | };
|
---|
343 |
|
---|
344 | // Converts an integer from the sign-and-magnitude representation to
|
---|
345 | // the biased representation. More precisely, let N be 2 to the
|
---|
346 | // power of (kBitCount - 1), an integer x is represented by the
|
---|
347 | // unsigned number x + N.
|
---|
348 | //
|
---|
349 | // For instance,
|
---|
350 | //
|
---|
351 | // -N + 1 (the most negative number representable using
|
---|
352 | // sign-and-magnitude) is represented by 1;
|
---|
353 | // 0 is represented by N; and
|
---|
354 | // N - 1 (the biggest number representable using
|
---|
355 | // sign-and-magnitude) is represented by 2N - 1.
|
---|
356 | //
|
---|
357 | // Read http://en.wikipedia.org/wiki/Signed_number_representations
|
---|
358 | // for more details on signed number representations.
|
---|
359 | static Bits SignAndMagnitudeToBiased(const Bits &sam) {
|
---|
360 | if (kSignBitMask & sam) {
|
---|
361 | // sam represents a negative number.
|
---|
362 | return ~sam + 1;
|
---|
363 | } else {
|
---|
364 | // sam represents a positive number.
|
---|
365 | return kSignBitMask | sam;
|
---|
366 | }
|
---|
367 | }
|
---|
368 |
|
---|
369 | // Given two numbers in the sign-and-magnitude representation,
|
---|
370 | // returns the distance between them as an unsigned number.
|
---|
371 | static Bits DistanceBetweenSignAndMagnitudeNumbers(const Bits &sam1,
|
---|
372 | const Bits &sam2) {
|
---|
373 | const Bits biased1 = SignAndMagnitudeToBiased(sam1);
|
---|
374 | const Bits biased2 = SignAndMagnitudeToBiased(sam2);
|
---|
375 | return (biased1 >= biased2) ? (biased1 - biased2) : (biased2 - biased1);
|
---|
376 | }
|
---|
377 |
|
---|
378 | FloatingPointUnion u_;
|
---|
379 | };
|
---|
380 |
|
---|
381 | // We cannot use std::numeric_limits<T>::max() as it clashes with the max()
|
---|
382 | // macro defined by <windows.h>.
|
---|
383 | template <>
|
---|
384 | inline float FloatingPoint<float>::Max() { return FLT_MAX; }
|
---|
385 | template <>
|
---|
386 | inline double FloatingPoint<double>::Max() { return DBL_MAX; }
|
---|
387 |
|
---|
388 | // Typedefs the instances of the FloatingPoint template class that we
|
---|
389 | // care to use.
|
---|
390 | typedef FloatingPoint<float> Float;
|
---|
391 | typedef FloatingPoint<double> Double;
|
---|
392 |
|
---|
393 | // In order to catch the mistake of putting tests that use different
|
---|
394 | // test fixture classes in the same test case, we need to assign
|
---|
395 | // unique IDs to fixture classes and compare them. The TypeId type is
|
---|
396 | // used to hold such IDs. The user should treat TypeId as an opaque
|
---|
397 | // type: the only operation allowed on TypeId values is to compare
|
---|
398 | // them for equality using the == operator.
|
---|
399 | typedef const void* TypeId;
|
---|
400 |
|
---|
401 | template <typename T>
|
---|
402 | class TypeIdHelper {
|
---|
403 | public:
|
---|
404 | // dummy_ must not have a const type. Otherwise an overly eager
|
---|
405 | // compiler (e.g. MSVC 7.1 & 8.0) may try to merge
|
---|
406 | // TypeIdHelper<T>::dummy_ for different Ts as an "optimization".
|
---|
407 | static bool dummy_;
|
---|
408 | };
|
---|
409 |
|
---|
410 | template <typename T>
|
---|
411 | bool TypeIdHelper<T>::dummy_ = false;
|
---|
412 |
|
---|
413 | // GetTypeId<T>() returns the ID of type T. Different values will be
|
---|
414 | // returned for different types. Calling the function twice with the
|
---|
415 | // same type argument is guaranteed to return the same ID.
|
---|
416 | template <typename T>
|
---|
417 | TypeId GetTypeId() {
|
---|
418 | // The compiler is required to allocate a different
|
---|
419 | // TypeIdHelper<T>::dummy_ variable for each T used to instantiate
|
---|
420 | // the template. Therefore, the address of dummy_ is guaranteed to
|
---|
421 | // be unique.
|
---|
422 | return &(TypeIdHelper<T>::dummy_);
|
---|
423 | }
|
---|
424 |
|
---|
425 | // Returns the type ID of ::testing::Test. Always call this instead
|
---|
426 | // of GetTypeId< ::testing::Test>() to get the type ID of
|
---|
427 | // ::testing::Test, as the latter may give the wrong result due to a
|
---|
428 | // suspected linker bug when compiling Google Test as a Mac OS X
|
---|
429 | // framework.
|
---|
430 | GTEST_API_ TypeId GetTestTypeId();
|
---|
431 |
|
---|
432 | // Defines the abstract factory interface that creates instances
|
---|
433 | // of a Test object.
|
---|
434 | class TestFactoryBase {
|
---|
435 | public:
|
---|
436 | virtual ~TestFactoryBase() {}
|
---|
437 |
|
---|
438 | // Creates a test instance to run. The instance is both created and destroyed
|
---|
439 | // within TestInfoImpl::Run()
|
---|
440 | virtual Test* CreateTest() = 0;
|
---|
441 |
|
---|
442 | protected:
|
---|
443 | TestFactoryBase() {}
|
---|
444 |
|
---|
445 | private:
|
---|
446 | GTEST_DISALLOW_COPY_AND_ASSIGN_(TestFactoryBase);
|
---|
447 | };
|
---|
448 |
|
---|
449 | // This class provides implementation of TeastFactoryBase interface.
|
---|
450 | // It is used in TEST and TEST_F macros.
|
---|
451 | template <class TestClass>
|
---|
452 | class TestFactoryImpl : public TestFactoryBase {
|
---|
453 | public:
|
---|
454 | virtual Test* CreateTest() { return new TestClass; }
|
---|
455 | };
|
---|
456 |
|
---|
457 | #if GTEST_OS_WINDOWS
|
---|
458 |
|
---|
459 | // Predicate-formatters for implementing the HRESULT checking macros
|
---|
460 | // {ASSERT|EXPECT}_HRESULT_{SUCCEEDED|FAILED}
|
---|
461 | // We pass a long instead of HRESULT to avoid causing an
|
---|
462 | // include dependency for the HRESULT type.
|
---|
463 | GTEST_API_ AssertionResult IsHRESULTSuccess(const char* expr,
|
---|
464 | long hr); // NOLINT
|
---|
465 | GTEST_API_ AssertionResult IsHRESULTFailure(const char* expr,
|
---|
466 | long hr); // NOLINT
|
---|
467 |
|
---|
468 | #endif // GTEST_OS_WINDOWS
|
---|
469 |
|
---|
470 | // Types of SetUpTestCase() and TearDownTestCase() functions.
|
---|
471 | typedef void (*SetUpTestCaseFunc)();
|
---|
472 | typedef void (*TearDownTestCaseFunc)();
|
---|
473 |
|
---|
474 | // Creates a new TestInfo object and registers it with Google Test;
|
---|
475 | // returns the created object.
|
---|
476 | //
|
---|
477 | // Arguments:
|
---|
478 | //
|
---|
479 | // test_case_name: name of the test case
|
---|
480 | // name: name of the test
|
---|
481 | // type_param the name of the test's type parameter, or NULL if
|
---|
482 | // this is not a typed or a type-parameterized test.
|
---|
483 | // value_param text representation of the test's value parameter,
|
---|
484 | // or NULL if this is not a type-parameterized test.
|
---|
485 | // fixture_class_id: ID of the test fixture class
|
---|
486 | // set_up_tc: pointer to the function that sets up the test case
|
---|
487 | // tear_down_tc: pointer to the function that tears down the test case
|
---|
488 | // factory: pointer to the factory that creates a test object.
|
---|
489 | // The newly created TestInfo instance will assume
|
---|
490 | // ownership of the factory object.
|
---|
491 | GTEST_API_ TestInfo* MakeAndRegisterTestInfo(
|
---|
492 | const char* test_case_name,
|
---|
493 | const char* name,
|
---|
494 | const char* type_param,
|
---|
495 | const char* value_param,
|
---|
496 | TypeId fixture_class_id,
|
---|
497 | SetUpTestCaseFunc set_up_tc,
|
---|
498 | TearDownTestCaseFunc tear_down_tc,
|
---|
499 | TestFactoryBase* factory);
|
---|
500 |
|
---|
501 | // If *pstr starts with the given prefix, modifies *pstr to be right
|
---|
502 | // past the prefix and returns true; otherwise leaves *pstr unchanged
|
---|
503 | // and returns false. None of pstr, *pstr, and prefix can be NULL.
|
---|
504 | GTEST_API_ bool SkipPrefix(const char* prefix, const char** pstr);
|
---|
505 |
|
---|
506 | #if GTEST_HAS_TYPED_TEST || GTEST_HAS_TYPED_TEST_P
|
---|
507 |
|
---|
508 | // State of the definition of a type-parameterized test case.
|
---|
509 | class GTEST_API_ TypedTestCasePState {
|
---|
510 | public:
|
---|
511 | TypedTestCasePState() : registered_(false) {}
|
---|
512 |
|
---|
513 | // Adds the given test name to defined_test_names_ and return true
|
---|
514 | // if the test case hasn't been registered; otherwise aborts the
|
---|
515 | // program.
|
---|
516 | bool AddTestName(const char* file, int line, const char* case_name,
|
---|
517 | const char* test_name) {
|
---|
518 | if (registered_) {
|
---|
519 | fprintf(stderr, "%s Test %s must be defined before "
|
---|
520 | "REGISTER_TYPED_TEST_CASE_P(%s, ...).\n",
|
---|
521 | FormatFileLocation(file, line).c_str(), test_name, case_name);
|
---|
522 | fflush(stderr);
|
---|
523 | posix::Abort();
|
---|
524 | }
|
---|
525 | defined_test_names_.insert(test_name);
|
---|
526 | return true;
|
---|
527 | }
|
---|
528 |
|
---|
529 | // Verifies that registered_tests match the test names in
|
---|
530 | // defined_test_names_; returns registered_tests if successful, or
|
---|
531 | // aborts the program otherwise.
|
---|
532 | const char* VerifyRegisteredTestNames(
|
---|
533 | const char* file, int line, const char* registered_tests);
|
---|
534 |
|
---|
535 | private:
|
---|
536 | bool registered_;
|
---|
537 | ::std::set<const char*> defined_test_names_;
|
---|
538 | };
|
---|
539 |
|
---|
540 | // Skips to the first non-space char after the first comma in 'str';
|
---|
541 | // returns NULL if no comma is found in 'str'.
|
---|
542 | inline const char* SkipComma(const char* str) {
|
---|
543 | const char* comma = strchr(str, ',');
|
---|
544 | if (comma == NULL) {
|
---|
545 | return NULL;
|
---|
546 | }
|
---|
547 | while (IsSpace(*(++comma))) {}
|
---|
548 | return comma;
|
---|
549 | }
|
---|
550 |
|
---|
551 | // Returns the prefix of 'str' before the first comma in it; returns
|
---|
552 | // the entire string if it contains no comma.
|
---|
553 | inline std::string GetPrefixUntilComma(const char* str) {
|
---|
554 | const char* comma = strchr(str, ',');
|
---|
555 | return comma == NULL ? str : std::string(str, comma);
|
---|
556 | }
|
---|
557 |
|
---|
558 | // TypeParameterizedTest<Fixture, TestSel, Types>::Register()
|
---|
559 | // registers a list of type-parameterized tests with Google Test. The
|
---|
560 | // return value is insignificant - we just need to return something
|
---|
561 | // such that we can call this function in a namespace scope.
|
---|
562 | //
|
---|
563 | // Implementation note: The GTEST_TEMPLATE_ macro declares a template
|
---|
564 | // template parameter. It's defined in gtest-type-util.h.
|
---|
565 | template <GTEST_TEMPLATE_ Fixture, class TestSel, typename Types>
|
---|
566 | class TypeParameterizedTest {
|
---|
567 | public:
|
---|
568 | // 'index' is the index of the test in the type list 'Types'
|
---|
569 | // specified in INSTANTIATE_TYPED_TEST_CASE_P(Prefix, TestCase,
|
---|
570 | // Types). Valid values for 'index' are [0, N - 1] where N is the
|
---|
571 | // length of Types.
|
---|
572 | static bool Register(const char* prefix, const char* case_name,
|
---|
573 | const char* test_names, int index) {
|
---|
574 | typedef typename Types::Head Type;
|
---|
575 | typedef Fixture<Type> FixtureClass;
|
---|
576 | typedef typename GTEST_BIND_(TestSel, Type) TestClass;
|
---|
577 |
|
---|
578 | // First, registers the first type-parameterized test in the type
|
---|
579 | // list.
|
---|
580 | MakeAndRegisterTestInfo(
|
---|
581 | (std::string(prefix) + (prefix[0] == '\0' ? "" : "/") + case_name + "/"
|
---|
582 | + StreamableToString(index)).c_str(),
|
---|
583 | GetPrefixUntilComma(test_names).c_str(),
|
---|
584 | GetTypeName<Type>().c_str(),
|
---|
585 | NULL, // No value parameter.
|
---|
586 | GetTypeId<FixtureClass>(),
|
---|
587 | TestClass::SetUpTestCase,
|
---|
588 | TestClass::TearDownTestCase,
|
---|
589 | new TestFactoryImpl<TestClass>);
|
---|
590 |
|
---|
591 | // Next, recurses (at compile time) with the tail of the type list.
|
---|
592 | return TypeParameterizedTest<Fixture, TestSel, typename Types::Tail>
|
---|
593 | ::Register(prefix, case_name, test_names, index + 1);
|
---|
594 | }
|
---|
595 | };
|
---|
596 |
|
---|
597 | // The base case for the compile time recursion.
|
---|
598 | template <GTEST_TEMPLATE_ Fixture, class TestSel>
|
---|
599 | class TypeParameterizedTest<Fixture, TestSel, Types0> {
|
---|
600 | public:
|
---|
601 | static bool Register(const char* /*prefix*/, const char* /*case_name*/,
|
---|
602 | const char* /*test_names*/, int /*index*/) {
|
---|
603 | return true;
|
---|
604 | }
|
---|
605 | };
|
---|
606 |
|
---|
607 | // TypeParameterizedTestCase<Fixture, Tests, Types>::Register()
|
---|
608 | // registers *all combinations* of 'Tests' and 'Types' with Google
|
---|
609 | // Test. The return value is insignificant - we just need to return
|
---|
610 | // something such that we can call this function in a namespace scope.
|
---|
611 | template <GTEST_TEMPLATE_ Fixture, typename Tests, typename Types>
|
---|
612 | class TypeParameterizedTestCase {
|
---|
613 | public:
|
---|
614 | static bool Register(const char* prefix, const char* case_name,
|
---|
615 | const char* test_names) {
|
---|
616 | typedef typename Tests::Head Head;
|
---|
617 |
|
---|
618 | // First, register the first test in 'Test' for each type in 'Types'.
|
---|
619 | TypeParameterizedTest<Fixture, Head, Types>::Register(
|
---|
620 | prefix, case_name, test_names, 0);
|
---|
621 |
|
---|
622 | // Next, recurses (at compile time) with the tail of the test list.
|
---|
623 | return TypeParameterizedTestCase<Fixture, typename Tests::Tail, Types>
|
---|
624 | ::Register(prefix, case_name, SkipComma(test_names));
|
---|
625 | }
|
---|
626 | };
|
---|
627 |
|
---|
628 | // The base case for the compile time recursion.
|
---|
629 | template <GTEST_TEMPLATE_ Fixture, typename Types>
|
---|
630 | class TypeParameterizedTestCase<Fixture, Templates0, Types> {
|
---|
631 | public:
|
---|
632 | static bool Register(const char* /*prefix*/, const char* /*case_name*/,
|
---|
633 | const char* /*test_names*/) {
|
---|
634 | return true;
|
---|
635 | }
|
---|
636 | };
|
---|
637 |
|
---|
638 | #endif // GTEST_HAS_TYPED_TEST || GTEST_HAS_TYPED_TEST_P
|
---|
639 |
|
---|
640 | // Returns the current OS stack trace as an std::string.
|
---|
641 | //
|
---|
642 | // The maximum number of stack frames to be included is specified by
|
---|
643 | // the gtest_stack_trace_depth flag. The skip_count parameter
|
---|
644 | // specifies the number of top frames to be skipped, which doesn't
|
---|
645 | // count against the number of frames to be included.
|
---|
646 | //
|
---|
647 | // For example, if Foo() calls Bar(), which in turn calls
|
---|
648 | // GetCurrentOsStackTraceExceptTop(..., 1), Foo() will be included in
|
---|
649 | // the trace but Bar() and GetCurrentOsStackTraceExceptTop() won't.
|
---|
650 | GTEST_API_ std::string GetCurrentOsStackTraceExceptTop(
|
---|
651 | UnitTest* unit_test, int skip_count);
|
---|
652 |
|
---|
653 | // Helpers for suppressing warnings on unreachable code or constant
|
---|
654 | // condition.
|
---|
655 |
|
---|
656 | // Always returns true.
|
---|
657 | GTEST_API_ bool AlwaysTrue();
|
---|
658 |
|
---|
659 | // Always returns false.
|
---|
660 | inline bool AlwaysFalse() { return !AlwaysTrue(); }
|
---|
661 |
|
---|
662 | // Helper for suppressing false warning from Clang on a const char*
|
---|
663 | // variable declared in a conditional expression always being NULL in
|
---|
664 | // the else branch.
|
---|
665 | struct GTEST_API_ ConstCharPtr {
|
---|
666 | ConstCharPtr(const char* str) : value(str) {}
|
---|
667 | operator bool() const { return true; }
|
---|
668 | const char* value;
|
---|
669 | };
|
---|
670 |
|
---|
671 | // A simple Linear Congruential Generator for generating random
|
---|
672 | // numbers with a uniform distribution. Unlike rand() and srand(), it
|
---|
673 | // doesn't use global state (and therefore can't interfere with user
|
---|
674 | // code). Unlike rand_r(), it's portable. An LCG isn't very random,
|
---|
675 | // but it's good enough for our purposes.
|
---|
676 | class GTEST_API_ Random {
|
---|
677 | public:
|
---|
678 | static const UInt32 kMaxRange = 1u << 31;
|
---|
679 |
|
---|
680 | explicit Random(UInt32 seed) : state_(seed) {}
|
---|
681 |
|
---|
682 | void Reseed(UInt32 seed) { state_ = seed; }
|
---|
683 |
|
---|
684 | // Generates a random number from [0, range). Crashes if 'range' is
|
---|
685 | // 0 or greater than kMaxRange.
|
---|
686 | UInt32 Generate(UInt32 range);
|
---|
687 |
|
---|
688 | private:
|
---|
689 | UInt32 state_;
|
---|
690 | GTEST_DISALLOW_COPY_AND_ASSIGN_(Random);
|
---|
691 | };
|
---|
692 |
|
---|
693 | // Defining a variable of type CompileAssertTypesEqual<T1, T2> will cause a
|
---|
694 | // compiler error iff T1 and T2 are different types.
|
---|
695 | template <typename T1, typename T2>
|
---|
696 | struct CompileAssertTypesEqual;
|
---|
697 |
|
---|
698 | template <typename T>
|
---|
699 | struct CompileAssertTypesEqual<T, T> {
|
---|
700 | };
|
---|
701 |
|
---|
702 | // Removes the reference from a type if it is a reference type,
|
---|
703 | // otherwise leaves it unchanged. This is the same as
|
---|
704 | // tr1::remove_reference, which is not widely available yet.
|
---|
705 | template <typename T>
|
---|
706 | struct RemoveReference { typedef T type; }; // NOLINT
|
---|
707 | template <typename T>
|
---|
708 | struct RemoveReference<T&> { typedef T type; }; // NOLINT
|
---|
709 |
|
---|
710 | // A handy wrapper around RemoveReference that works when the argument
|
---|
711 | // T depends on template parameters.
|
---|
712 | #define GTEST_REMOVE_REFERENCE_(T) \
|
---|
713 | typename ::testing::internal::RemoveReference<T>::type
|
---|
714 |
|
---|
715 | // Removes const from a type if it is a const type, otherwise leaves
|
---|
716 | // it unchanged. This is the same as tr1::remove_const, which is not
|
---|
717 | // widely available yet.
|
---|
718 | template <typename T>
|
---|
719 | struct RemoveConst { typedef T type; }; // NOLINT
|
---|
720 | template <typename T>
|
---|
721 | struct RemoveConst<const T> { typedef T type; }; // NOLINT
|
---|
722 |
|
---|
723 | // MSVC 8.0, Sun C++, and IBM XL C++ have a bug which causes the above
|
---|
724 | // definition to fail to remove the const in 'const int[3]' and 'const
|
---|
725 | // char[3][4]'. The following specialization works around the bug.
|
---|
726 | template <typename T, size_t N>
|
---|
727 | struct RemoveConst<const T[N]> {
|
---|
728 | typedef typename RemoveConst<T>::type type[N];
|
---|
729 | };
|
---|
730 |
|
---|
731 | #if defined(_MSC_VER) && _MSC_VER < 1400
|
---|
732 | // This is the only specialization that allows VC++ 7.1 to remove const in
|
---|
733 | // 'const int[3] and 'const int[3][4]'. However, it causes trouble with GCC
|
---|
734 | // and thus needs to be conditionally compiled.
|
---|
735 | template <typename T, size_t N>
|
---|
736 | struct RemoveConst<T[N]> {
|
---|
737 | typedef typename RemoveConst<T>::type type[N];
|
---|
738 | };
|
---|
739 | #endif
|
---|
740 |
|
---|
741 | // A handy wrapper around RemoveConst that works when the argument
|
---|
742 | // T depends on template parameters.
|
---|
743 | #define GTEST_REMOVE_CONST_(T) \
|
---|
744 | typename ::testing::internal::RemoveConst<T>::type
|
---|
745 |
|
---|
746 | // Turns const U&, U&, const U, and U all into U.
|
---|
747 | #define GTEST_REMOVE_REFERENCE_AND_CONST_(T) \
|
---|
748 | GTEST_REMOVE_CONST_(GTEST_REMOVE_REFERENCE_(T))
|
---|
749 |
|
---|
750 | // Adds reference to a type if it is not a reference type,
|
---|
751 | // otherwise leaves it unchanged. This is the same as
|
---|
752 | // tr1::add_reference, which is not widely available yet.
|
---|
753 | template <typename T>
|
---|
754 | struct AddReference { typedef T& type; }; // NOLINT
|
---|
755 | template <typename T>
|
---|
756 | struct AddReference<T&> { typedef T& type; }; // NOLINT
|
---|
757 |
|
---|
758 | // A handy wrapper around AddReference that works when the argument T
|
---|
759 | // depends on template parameters.
|
---|
760 | #define GTEST_ADD_REFERENCE_(T) \
|
---|
761 | typename ::testing::internal::AddReference<T>::type
|
---|
762 |
|
---|
763 | // Adds a reference to const on top of T as necessary. For example,
|
---|
764 | // it transforms
|
---|
765 | //
|
---|
766 | // char ==> const char&
|
---|
767 | // const char ==> const char&
|
---|
768 | // char& ==> const char&
|
---|
769 | // const char& ==> const char&
|
---|
770 | //
|
---|
771 | // The argument T must depend on some template parameters.
|
---|
772 | #define GTEST_REFERENCE_TO_CONST_(T) \
|
---|
773 | GTEST_ADD_REFERENCE_(const GTEST_REMOVE_REFERENCE_(T))
|
---|
774 |
|
---|
775 | // ImplicitlyConvertible<From, To>::value is a compile-time bool
|
---|
776 | // constant that's true iff type From can be implicitly converted to
|
---|
777 | // type To.
|
---|
778 | template <typename From, typename To>
|
---|
779 | class ImplicitlyConvertible {
|
---|
780 | private:
|
---|
781 | // We need the following helper functions only for their types.
|
---|
782 | // They have no implementations.
|
---|
783 |
|
---|
784 | // MakeFrom() is an expression whose type is From. We cannot simply
|
---|
785 | // use From(), as the type From may not have a public default
|
---|
786 | // constructor.
|
---|
787 | static From MakeFrom();
|
---|
788 |
|
---|
789 | // These two functions are overloaded. Given an expression
|
---|
790 | // Helper(x), the compiler will pick the first version if x can be
|
---|
791 | // implicitly converted to type To; otherwise it will pick the
|
---|
792 | // second version.
|
---|
793 | //
|
---|
794 | // The first version returns a value of size 1, and the second
|
---|
795 | // version returns a value of size 2. Therefore, by checking the
|
---|
796 | // size of Helper(x), which can be done at compile time, we can tell
|
---|
797 | // which version of Helper() is used, and hence whether x can be
|
---|
798 | // implicitly converted to type To.
|
---|
799 | static char Helper(To);
|
---|
800 | static char (&Helper(...))[2]; // NOLINT
|
---|
801 |
|
---|
802 | // We have to put the 'public' section after the 'private' section,
|
---|
803 | // or MSVC refuses to compile the code.
|
---|
804 | public:
|
---|
805 | // MSVC warns about implicitly converting from double to int for
|
---|
806 | // possible loss of data, so we need to temporarily disable the
|
---|
807 | // warning.
|
---|
808 | #ifdef _MSC_VER
|
---|
809 | # pragma warning(push) // Saves the current warning state.
|
---|
810 | # pragma warning(disable:4244) // Temporarily disables warning 4244.
|
---|
811 |
|
---|
812 | static const bool value =
|
---|
813 | sizeof(Helper(ImplicitlyConvertible::MakeFrom())) == 1;
|
---|
814 | # pragma warning(pop) // Restores the warning state.
|
---|
815 | #elif defined(__BORLANDC__)
|
---|
816 | // C++Builder cannot use member overload resolution during template
|
---|
817 | // instantiation. The simplest workaround is to use its C++0x type traits
|
---|
818 | // functions (C++Builder 2009 and above only).
|
---|
819 | static const bool value = __is_convertible(From, To);
|
---|
820 | #else
|
---|
821 | static const bool value =
|
---|
822 | sizeof(Helper(ImplicitlyConvertible::MakeFrom())) == 1;
|
---|
823 | #endif // _MSV_VER
|
---|
824 | };
|
---|
825 | template <typename From, typename To>
|
---|
826 | const bool ImplicitlyConvertible<From, To>::value;
|
---|
827 |
|
---|
828 | // IsAProtocolMessage<T>::value is a compile-time bool constant that's
|
---|
829 | // true iff T is type ProtocolMessage, proto2::Message, or a subclass
|
---|
830 | // of those.
|
---|
831 | template <typename T>
|
---|
832 | struct IsAProtocolMessage
|
---|
833 | : public bool_constant<
|
---|
834 | ImplicitlyConvertible<const T*, const ::ProtocolMessage*>::value ||
|
---|
835 | ImplicitlyConvertible<const T*, const ::proto2::Message*>::value> {
|
---|
836 | };
|
---|
837 |
|
---|
838 | // When the compiler sees expression IsContainerTest<C>(0), if C is an
|
---|
839 | // STL-style container class, the first overload of IsContainerTest
|
---|
840 | // will be viable (since both C::iterator* and C::const_iterator* are
|
---|
841 | // valid types and NULL can be implicitly converted to them). It will
|
---|
842 | // be picked over the second overload as 'int' is a perfect match for
|
---|
843 | // the type of argument 0. If C::iterator or C::const_iterator is not
|
---|
844 | // a valid type, the first overload is not viable, and the second
|
---|
845 | // overload will be picked. Therefore, we can determine whether C is
|
---|
846 | // a container class by checking the type of IsContainerTest<C>(0).
|
---|
847 | // The value of the expression is insignificant.
|
---|
848 | //
|
---|
849 | // Note that we look for both C::iterator and C::const_iterator. The
|
---|
850 | // reason is that C++ injects the name of a class as a member of the
|
---|
851 | // class itself (e.g. you can refer to class iterator as either
|
---|
852 | // 'iterator' or 'iterator::iterator'). If we look for C::iterator
|
---|
853 | // only, for example, we would mistakenly think that a class named
|
---|
854 | // iterator is an STL container.
|
---|
855 | //
|
---|
856 | // Also note that the simpler approach of overloading
|
---|
857 | // IsContainerTest(typename C::const_iterator*) and
|
---|
858 | // IsContainerTest(...) doesn't work with Visual Age C++ and Sun C++.
|
---|
859 | typedef int IsContainer;
|
---|
860 | template <class C>
|
---|
861 | IsContainer IsContainerTest(int /* dummy */,
|
---|
862 | typename C::iterator* /* it */ = NULL,
|
---|
863 | typename C::const_iterator* /* const_it */ = NULL) {
|
---|
864 | return 0;
|
---|
865 | }
|
---|
866 |
|
---|
867 | typedef char IsNotContainer;
|
---|
868 | template <class C>
|
---|
869 | IsNotContainer IsContainerTest(long /* dummy */) { return '\0'; }
|
---|
870 |
|
---|
871 | // EnableIf<condition>::type is void when 'Cond' is true, and
|
---|
872 | // undefined when 'Cond' is false. To use SFINAE to make a function
|
---|
873 | // overload only apply when a particular expression is true, add
|
---|
874 | // "typename EnableIf<expression>::type* = 0" as the last parameter.
|
---|
875 | template<bool> struct EnableIf;
|
---|
876 | template<> struct EnableIf<true> { typedef void type; }; // NOLINT
|
---|
877 |
|
---|
878 | // Utilities for native arrays.
|
---|
879 |
|
---|
880 | // ArrayEq() compares two k-dimensional native arrays using the
|
---|
881 | // elements' operator==, where k can be any integer >= 0. When k is
|
---|
882 | // 0, ArrayEq() degenerates into comparing a single pair of values.
|
---|
883 |
|
---|
884 | template <typename T, typename U>
|
---|
885 | bool ArrayEq(const T* lhs, size_t size, const U* rhs);
|
---|
886 |
|
---|
887 | // This generic version is used when k is 0.
|
---|
888 | template <typename T, typename U>
|
---|
889 | inline bool ArrayEq(const T& lhs, const U& rhs) { return lhs == rhs; }
|
---|
890 |
|
---|
891 | // This overload is used when k >= 1.
|
---|
892 | template <typename T, typename U, size_t N>
|
---|
893 | inline bool ArrayEq(const T(&lhs)[N], const U(&rhs)[N]) {
|
---|
894 | return internal::ArrayEq(lhs, N, rhs);
|
---|
895 | }
|
---|
896 |
|
---|
897 | // This helper reduces code bloat. If we instead put its logic inside
|
---|
898 | // the previous ArrayEq() function, arrays with different sizes would
|
---|
899 | // lead to different copies of the template code.
|
---|
900 | template <typename T, typename U>
|
---|
901 | bool ArrayEq(const T* lhs, size_t size, const U* rhs) {
|
---|
902 | for (size_t i = 0; i != size; i++) {
|
---|
903 | if (!internal::ArrayEq(lhs[i], rhs[i]))
|
---|
904 | return false;
|
---|
905 | }
|
---|
906 | return true;
|
---|
907 | }
|
---|
908 |
|
---|
909 | // Finds the first element in the iterator range [begin, end) that
|
---|
910 | // equals elem. Element may be a native array type itself.
|
---|
911 | template <typename Iter, typename Element>
|
---|
912 | Iter ArrayAwareFind(Iter begin, Iter end, const Element& elem) {
|
---|
913 | for (Iter it = begin; it != end; ++it) {
|
---|
914 | if (internal::ArrayEq(*it, elem))
|
---|
915 | return it;
|
---|
916 | }
|
---|
917 | return end;
|
---|
918 | }
|
---|
919 |
|
---|
920 | // CopyArray() copies a k-dimensional native array using the elements'
|
---|
921 | // operator=, where k can be any integer >= 0. When k is 0,
|
---|
922 | // CopyArray() degenerates into copying a single value.
|
---|
923 |
|
---|
924 | template <typename T, typename U>
|
---|
925 | void CopyArray(const T* from, size_t size, U* to);
|
---|
926 |
|
---|
927 | // This generic version is used when k is 0.
|
---|
928 | template <typename T, typename U>
|
---|
929 | inline void CopyArray(const T& from, U* to) { *to = from; }
|
---|
930 |
|
---|
931 | // This overload is used when k >= 1.
|
---|
932 | template <typename T, typename U, size_t N>
|
---|
933 | inline void CopyArray(const T(&from)[N], U(*to)[N]) {
|
---|
934 | internal::CopyArray(from, N, *to);
|
---|
935 | }
|
---|
936 |
|
---|
937 | // This helper reduces code bloat. If we instead put its logic inside
|
---|
938 | // the previous CopyArray() function, arrays with different sizes
|
---|
939 | // would lead to different copies of the template code.
|
---|
940 | template <typename T, typename U>
|
---|
941 | void CopyArray(const T* from, size_t size, U* to) {
|
---|
942 | for (size_t i = 0; i != size; i++) {
|
---|
943 | internal::CopyArray(from[i], to + i);
|
---|
944 | }
|
---|
945 | }
|
---|
946 |
|
---|
947 | // The relation between an NativeArray object (see below) and the
|
---|
948 | // native array it represents.
|
---|
949 | enum RelationToSource {
|
---|
950 | kReference, // The NativeArray references the native array.
|
---|
951 | kCopy // The NativeArray makes a copy of the native array and
|
---|
952 | // owns the copy.
|
---|
953 | };
|
---|
954 |
|
---|
955 | // Adapts a native array to a read-only STL-style container. Instead
|
---|
956 | // of the complete STL container concept, this adaptor only implements
|
---|
957 | // members useful for Google Mock's container matchers. New members
|
---|
958 | // should be added as needed. To simplify the implementation, we only
|
---|
959 | // support Element being a raw type (i.e. having no top-level const or
|
---|
960 | // reference modifier). It's the client's responsibility to satisfy
|
---|
961 | // this requirement. Element can be an array type itself (hence
|
---|
962 | // multi-dimensional arrays are supported).
|
---|
963 | template <typename Element>
|
---|
964 | class NativeArray {
|
---|
965 | public:
|
---|
966 | // STL-style container typedefs.
|
---|
967 | typedef Element value_type;
|
---|
968 | typedef Element* iterator;
|
---|
969 | typedef const Element* const_iterator;
|
---|
970 |
|
---|
971 | // Constructs from a native array.
|
---|
972 | NativeArray(const Element* array, size_t count, RelationToSource relation) {
|
---|
973 | Init(array, count, relation);
|
---|
974 | }
|
---|
975 |
|
---|
976 | // Copy constructor.
|
---|
977 | NativeArray(const NativeArray& rhs) {
|
---|
978 | Init(rhs.array_, rhs.size_, rhs.relation_to_source_);
|
---|
979 | }
|
---|
980 |
|
---|
981 | ~NativeArray() {
|
---|
982 | // Ensures that the user doesn't instantiate NativeArray with a
|
---|
983 | // const or reference type.
|
---|
984 | static_cast<void>(StaticAssertTypeEqHelper<Element,
|
---|
985 | GTEST_REMOVE_REFERENCE_AND_CONST_(Element)>());
|
---|
986 | if (relation_to_source_ == kCopy)
|
---|
987 | delete[] array_;
|
---|
988 | }
|
---|
989 |
|
---|
990 | // STL-style container methods.
|
---|
991 | size_t size() const { return size_; }
|
---|
992 | const_iterator begin() const { return array_; }
|
---|
993 | const_iterator end() const { return array_ + size_; }
|
---|
994 | bool operator==(const NativeArray& rhs) const {
|
---|
995 | return size() == rhs.size() &&
|
---|
996 | ArrayEq(begin(), size(), rhs.begin());
|
---|
997 | }
|
---|
998 |
|
---|
999 | private:
|
---|
1000 | // Initializes this object; makes a copy of the input array if
|
---|
1001 | // 'relation' is kCopy.
|
---|
1002 | void Init(const Element* array, size_t a_size, RelationToSource relation) {
|
---|
1003 | if (relation == kReference) {
|
---|
1004 | array_ = array;
|
---|
1005 | } else {
|
---|
1006 | Element* const copy = new Element[a_size];
|
---|
1007 | CopyArray(array, a_size, copy);
|
---|
1008 | array_ = copy;
|
---|
1009 | }
|
---|
1010 | size_ = a_size;
|
---|
1011 | relation_to_source_ = relation;
|
---|
1012 | }
|
---|
1013 |
|
---|
1014 | const Element* array_;
|
---|
1015 | size_t size_;
|
---|
1016 | RelationToSource relation_to_source_;
|
---|
1017 |
|
---|
1018 | GTEST_DISALLOW_ASSIGN_(NativeArray);
|
---|
1019 | };
|
---|
1020 |
|
---|
1021 | } // namespace internal
|
---|
1022 | } // namespace testing
|
---|
1023 |
|
---|
1024 | #define GTEST_MESSAGE_AT_(file, line, message, result_type) \
|
---|
1025 | ::testing::internal::AssertHelper(result_type, file, line, message) \
|
---|
1026 | = ::testing::Message()
|
---|
1027 |
|
---|
1028 | #define GTEST_MESSAGE_(message, result_type) \
|
---|
1029 | GTEST_MESSAGE_AT_(__FILE__, __LINE__, message, result_type)
|
---|
1030 |
|
---|
1031 | #define GTEST_FATAL_FAILURE_(message) \
|
---|
1032 | return GTEST_MESSAGE_(message, ::testing::TestPartResult::kFatalFailure)
|
---|
1033 |
|
---|
1034 | #define GTEST_NONFATAL_FAILURE_(message) \
|
---|
1035 | GTEST_MESSAGE_(message, ::testing::TestPartResult::kNonFatalFailure)
|
---|
1036 |
|
---|
1037 | #define GTEST_SUCCESS_(message) \
|
---|
1038 | GTEST_MESSAGE_(message, ::testing::TestPartResult::kSuccess)
|
---|
1039 |
|
---|
1040 | // Suppresses MSVC warnings 4072 (unreachable code) for the code following
|
---|
1041 | // statement if it returns or throws (or doesn't return or throw in some
|
---|
1042 | // situations).
|
---|
1043 | #define GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement) \
|
---|
1044 | if (::testing::internal::AlwaysTrue()) { statement; }
|
---|
1045 |
|
---|
1046 | #define GTEST_TEST_THROW_(statement, expected_exception, fail) \
|
---|
1047 | GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
|
---|
1048 | if (::testing::internal::ConstCharPtr gtest_msg = "") { \
|
---|
1049 | bool gtest_caught_expected = false; \
|
---|
1050 | try { \
|
---|
1051 | GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
|
---|
1052 | } \
|
---|
1053 | catch (expected_exception const&) { \
|
---|
1054 | gtest_caught_expected = true; \
|
---|
1055 | } \
|
---|
1056 | catch (...) { \
|
---|
1057 | gtest_msg.value = \
|
---|
1058 | "Expected: " #statement " throws an exception of type " \
|
---|
1059 | #expected_exception ".\n Actual: it throws a different type."; \
|
---|
1060 | goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__); \
|
---|
1061 | } \
|
---|
1062 | if (!gtest_caught_expected) { \
|
---|
1063 | gtest_msg.value = \
|
---|
1064 | "Expected: " #statement " throws an exception of type " \
|
---|
1065 | #expected_exception ".\n Actual: it throws nothing."; \
|
---|
1066 | goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__); \
|
---|
1067 | } \
|
---|
1068 | } else \
|
---|
1069 | GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__): \
|
---|
1070 | fail(gtest_msg.value)
|
---|
1071 |
|
---|
1072 | #define GTEST_TEST_NO_THROW_(statement, fail) \
|
---|
1073 | GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
|
---|
1074 | if (::testing::internal::AlwaysTrue()) { \
|
---|
1075 | try { \
|
---|
1076 | GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
|
---|
1077 | } \
|
---|
1078 | catch (...) { \
|
---|
1079 | goto GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__); \
|
---|
1080 | } \
|
---|
1081 | } else \
|
---|
1082 | GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__): \
|
---|
1083 | fail("Expected: " #statement " doesn't throw an exception.\n" \
|
---|
1084 | " Actual: it throws.")
|
---|
1085 |
|
---|
1086 | #define GTEST_TEST_ANY_THROW_(statement, fail) \
|
---|
1087 | GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
|
---|
1088 | if (::testing::internal::AlwaysTrue()) { \
|
---|
1089 | bool gtest_caught_any = false; \
|
---|
1090 | try { \
|
---|
1091 | GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
|
---|
1092 | } \
|
---|
1093 | catch (...) { \
|
---|
1094 | gtest_caught_any = true; \
|
---|
1095 | } \
|
---|
1096 | if (!gtest_caught_any) { \
|
---|
1097 | goto GTEST_CONCAT_TOKEN_(gtest_label_testanythrow_, __LINE__); \
|
---|
1098 | } \
|
---|
1099 | } else \
|
---|
1100 | GTEST_CONCAT_TOKEN_(gtest_label_testanythrow_, __LINE__): \
|
---|
1101 | fail("Expected: " #statement " throws an exception.\n" \
|
---|
1102 | " Actual: it doesn't.")
|
---|
1103 |
|
---|
1104 |
|
---|
1105 | // Implements Boolean test assertions such as EXPECT_TRUE. expression can be
|
---|
1106 | // either a boolean expression or an AssertionResult. text is a textual
|
---|
1107 | // represenation of expression as it was passed into the EXPECT_TRUE.
|
---|
1108 | #define GTEST_TEST_BOOLEAN_(expression, text, actual, expected, fail) \
|
---|
1109 | GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
|
---|
1110 | if (const ::testing::AssertionResult gtest_ar_ = \
|
---|
1111 | ::testing::AssertionResult(expression)) \
|
---|
1112 | ; \
|
---|
1113 | else \
|
---|
1114 | fail(::testing::internal::GetBoolAssertionFailureMessage(\
|
---|
1115 | gtest_ar_, text, #actual, #expected).c_str())
|
---|
1116 |
|
---|
1117 | #define GTEST_TEST_NO_FATAL_FAILURE_(statement, fail) \
|
---|
1118 | GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
|
---|
1119 | if (::testing::internal::AlwaysTrue()) { \
|
---|
1120 | ::testing::internal::HasNewFatalFailureHelper gtest_fatal_failure_checker; \
|
---|
1121 | GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
|
---|
1122 | if (gtest_fatal_failure_checker.has_new_fatal_failure()) { \
|
---|
1123 | goto GTEST_CONCAT_TOKEN_(gtest_label_testnofatal_, __LINE__); \
|
---|
1124 | } \
|
---|
1125 | } else \
|
---|
1126 | GTEST_CONCAT_TOKEN_(gtest_label_testnofatal_, __LINE__): \
|
---|
1127 | fail("Expected: " #statement " doesn't generate new fatal " \
|
---|
1128 | "failures in the current thread.\n" \
|
---|
1129 | " Actual: it does.")
|
---|
1130 |
|
---|
1131 | // Expands to the name of the class that implements the given test.
|
---|
1132 | #define GTEST_TEST_CLASS_NAME_(test_case_name, test_name) \
|
---|
1133 | test_case_name##_##test_name##_Test
|
---|
1134 |
|
---|
1135 | // Helper macro for defining tests.
|
---|
1136 | #define GTEST_TEST_(test_case_name, test_name, parent_class, parent_id)\
|
---|
1137 | class GTEST_TEST_CLASS_NAME_(test_case_name, test_name) : public parent_class {\
|
---|
1138 | public:\
|
---|
1139 | GTEST_TEST_CLASS_NAME_(test_case_name, test_name)() {}\
|
---|
1140 | private:\
|
---|
1141 | virtual void TestBody();\
|
---|
1142 | static ::testing::TestInfo* const test_info_ GTEST_ATTRIBUTE_UNUSED_;\
|
---|
1143 | GTEST_DISALLOW_COPY_AND_ASSIGN_(\
|
---|
1144 | GTEST_TEST_CLASS_NAME_(test_case_name, test_name));\
|
---|
1145 | };\
|
---|
1146 | \
|
---|
1147 | ::testing::TestInfo* const GTEST_TEST_CLASS_NAME_(test_case_name, test_name)\
|
---|
1148 | ::test_info_ =\
|
---|
1149 | ::testing::internal::MakeAndRegisterTestInfo(\
|
---|
1150 | #test_case_name, #test_name, NULL, NULL, \
|
---|
1151 | (parent_id), \
|
---|
1152 | parent_class::SetUpTestCase, \
|
---|
1153 | parent_class::TearDownTestCase, \
|
---|
1154 | new ::testing::internal::TestFactoryImpl<\
|
---|
1155 | GTEST_TEST_CLASS_NAME_(test_case_name, test_name)>);\
|
---|
1156 | void GTEST_TEST_CLASS_NAME_(test_case_name, test_name)::TestBody()
|
---|
1157 |
|
---|
1158 | #endif // GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
|
---|