[12746] | 1 | // Copyright 2008 Google Inc.
|
---|
| 2 | // All Rights Reserved.
|
---|
| 3 | //
|
---|
| 4 | // Redistribution and use in source and binary forms, with or without
|
---|
| 5 | // modification, are permitted provided that the following conditions are
|
---|
| 6 | // met:
|
---|
| 7 | //
|
---|
| 8 | // * Redistributions of source code must retain the above copyright
|
---|
| 9 | // notice, this list of conditions and the following disclaimer.
|
---|
| 10 | // * Redistributions in binary form must reproduce the above
|
---|
| 11 | // copyright notice, this list of conditions and the following disclaimer
|
---|
| 12 | // in the documentation and/or other materials provided with the
|
---|
| 13 | // distribution.
|
---|
| 14 | // * Neither the name of Google Inc. nor the names of its
|
---|
| 15 | // contributors may be used to endorse or promote products derived from
|
---|
| 16 | // this software without specific prior written permission.
|
---|
| 17 | //
|
---|
| 18 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
---|
| 19 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
---|
| 20 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
---|
| 21 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
---|
| 22 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
---|
| 23 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
---|
| 24 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
---|
| 25 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
---|
| 26 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
---|
| 27 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
---|
| 28 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
---|
| 29 | //
|
---|
| 30 | // Author: wan@google.com (Zhanyong Wan)
|
---|
| 31 |
|
---|
| 32 | // This sample shows how to test common properties of multiple
|
---|
| 33 | // implementations of the same interface (aka interface tests).
|
---|
| 34 |
|
---|
| 35 | // The interface and its implementations are in this header.
|
---|
| 36 | #include "prime_tables.h"
|
---|
| 37 |
|
---|
| 38 | #include "gtest/gtest.h"
|
---|
| 39 |
|
---|
| 40 | // First, we define some factory functions for creating instances of
|
---|
| 41 | // the implementations. You may be able to skip this step if all your
|
---|
| 42 | // implementations can be constructed the same way.
|
---|
| 43 |
|
---|
| 44 | template <class T>
|
---|
| 45 | PrimeTable* CreatePrimeTable();
|
---|
| 46 |
|
---|
| 47 | template <>
|
---|
| 48 | PrimeTable* CreatePrimeTable<OnTheFlyPrimeTable>() {
|
---|
| 49 | return new OnTheFlyPrimeTable;
|
---|
| 50 | }
|
---|
| 51 |
|
---|
| 52 | template <>
|
---|
| 53 | PrimeTable* CreatePrimeTable<PreCalculatedPrimeTable>() {
|
---|
| 54 | return new PreCalculatedPrimeTable(10000);
|
---|
| 55 | }
|
---|
| 56 |
|
---|
| 57 | // Then we define a test fixture class template.
|
---|
| 58 | template <class T>
|
---|
| 59 | class PrimeTableTest : public testing::Test {
|
---|
| 60 | protected:
|
---|
| 61 | // The ctor calls the factory function to create a prime table
|
---|
| 62 | // implemented by T.
|
---|
| 63 | PrimeTableTest() : table_(CreatePrimeTable<T>()) {}
|
---|
| 64 |
|
---|
| 65 | virtual ~PrimeTableTest() { delete table_; }
|
---|
| 66 |
|
---|
| 67 | // Note that we test an implementation via the base interface
|
---|
| 68 | // instead of the actual implementation class. This is important
|
---|
| 69 | // for keeping the tests close to the real world scenario, where the
|
---|
| 70 | // implementation is invoked via the base interface. It avoids
|
---|
| 71 | // got-yas where the implementation class has a method that shadows
|
---|
| 72 | // a method with the same name (but slightly different argument
|
---|
| 73 | // types) in the base interface, for example.
|
---|
| 74 | PrimeTable* const table_;
|
---|
| 75 | };
|
---|
| 76 |
|
---|
| 77 | #if GTEST_HAS_TYPED_TEST
|
---|
| 78 |
|
---|
| 79 | using testing::Types;
|
---|
| 80 |
|
---|
| 81 | // Google Test offers two ways for reusing tests for different types.
|
---|
| 82 | // The first is called "typed tests". You should use it if you
|
---|
| 83 | // already know *all* the types you are gonna exercise when you write
|
---|
| 84 | // the tests.
|
---|
| 85 |
|
---|
| 86 | // To write a typed test case, first use
|
---|
| 87 | //
|
---|
| 88 | // TYPED_TEST_CASE(TestCaseName, TypeList);
|
---|
| 89 | //
|
---|
| 90 | // to declare it and specify the type parameters. As with TEST_F,
|
---|
| 91 | // TestCaseName must match the test fixture name.
|
---|
| 92 |
|
---|
| 93 | // The list of types we want to test.
|
---|
| 94 | typedef Types<OnTheFlyPrimeTable, PreCalculatedPrimeTable> Implementations;
|
---|
| 95 |
|
---|
| 96 | TYPED_TEST_CASE(PrimeTableTest, Implementations);
|
---|
| 97 |
|
---|
| 98 | // Then use TYPED_TEST(TestCaseName, TestName) to define a typed test,
|
---|
| 99 | // similar to TEST_F.
|
---|
| 100 | TYPED_TEST(PrimeTableTest, ReturnsFalseForNonPrimes) {
|
---|
| 101 | // Inside the test body, you can refer to the type parameter by
|
---|
| 102 | // TypeParam, and refer to the fixture class by TestFixture. We
|
---|
| 103 | // don't need them in this example.
|
---|
| 104 |
|
---|
| 105 | // Since we are in the template world, C++ requires explicitly
|
---|
| 106 | // writing 'this->' when referring to members of the fixture class.
|
---|
| 107 | // This is something you have to learn to live with.
|
---|
| 108 | EXPECT_FALSE(this->table_->IsPrime(-5));
|
---|
| 109 | EXPECT_FALSE(this->table_->IsPrime(0));
|
---|
| 110 | EXPECT_FALSE(this->table_->IsPrime(1));
|
---|
| 111 | EXPECT_FALSE(this->table_->IsPrime(4));
|
---|
| 112 | EXPECT_FALSE(this->table_->IsPrime(6));
|
---|
| 113 | EXPECT_FALSE(this->table_->IsPrime(100));
|
---|
| 114 | }
|
---|
| 115 |
|
---|
| 116 | TYPED_TEST(PrimeTableTest, ReturnsTrueForPrimes) {
|
---|
| 117 | EXPECT_TRUE(this->table_->IsPrime(2));
|
---|
| 118 | EXPECT_TRUE(this->table_->IsPrime(3));
|
---|
| 119 | EXPECT_TRUE(this->table_->IsPrime(5));
|
---|
| 120 | EXPECT_TRUE(this->table_->IsPrime(7));
|
---|
| 121 | EXPECT_TRUE(this->table_->IsPrime(11));
|
---|
| 122 | EXPECT_TRUE(this->table_->IsPrime(131));
|
---|
| 123 | }
|
---|
| 124 |
|
---|
| 125 | TYPED_TEST(PrimeTableTest, CanGetNextPrime) {
|
---|
| 126 | EXPECT_EQ(2, this->table_->GetNextPrime(0));
|
---|
| 127 | EXPECT_EQ(3, this->table_->GetNextPrime(2));
|
---|
| 128 | EXPECT_EQ(5, this->table_->GetNextPrime(3));
|
---|
| 129 | EXPECT_EQ(7, this->table_->GetNextPrime(5));
|
---|
| 130 | EXPECT_EQ(11, this->table_->GetNextPrime(7));
|
---|
| 131 | EXPECT_EQ(131, this->table_->GetNextPrime(128));
|
---|
| 132 | }
|
---|
| 133 |
|
---|
| 134 | // That's it! Google Test will repeat each TYPED_TEST for each type
|
---|
| 135 | // in the type list specified in TYPED_TEST_CASE. Sit back and be
|
---|
| 136 | // happy that you don't have to define them multiple times.
|
---|
| 137 |
|
---|
| 138 | #endif // GTEST_HAS_TYPED_TEST
|
---|
| 139 |
|
---|
| 140 | #if GTEST_HAS_TYPED_TEST_P
|
---|
| 141 |
|
---|
| 142 | using testing::Types;
|
---|
| 143 |
|
---|
| 144 | // Sometimes, however, you don't yet know all the types that you want
|
---|
| 145 | // to test when you write the tests. For example, if you are the
|
---|
| 146 | // author of an interface and expect other people to implement it, you
|
---|
| 147 | // might want to write a set of tests to make sure each implementation
|
---|
| 148 | // conforms to some basic requirements, but you don't know what
|
---|
| 149 | // implementations will be written in the future.
|
---|
| 150 | //
|
---|
| 151 | // How can you write the tests without committing to the type
|
---|
| 152 | // parameters? That's what "type-parameterized tests" can do for you.
|
---|
| 153 | // It is a bit more involved than typed tests, but in return you get a
|
---|
| 154 | // test pattern that can be reused in many contexts, which is a big
|
---|
| 155 | // win. Here's how you do it:
|
---|
| 156 |
|
---|
| 157 | // First, define a test fixture class template. Here we just reuse
|
---|
| 158 | // the PrimeTableTest fixture defined earlier:
|
---|
| 159 |
|
---|
| 160 | template <class T>
|
---|
| 161 | class PrimeTableTest2 : public PrimeTableTest<T> {
|
---|
| 162 | };
|
---|
| 163 |
|
---|
| 164 | // Then, declare the test case. The argument is the name of the test
|
---|
| 165 | // fixture, and also the name of the test case (as usual). The _P
|
---|
| 166 | // suffix is for "parameterized" or "pattern".
|
---|
| 167 | TYPED_TEST_CASE_P(PrimeTableTest2);
|
---|
| 168 |
|
---|
| 169 | // Next, use TYPED_TEST_P(TestCaseName, TestName) to define a test,
|
---|
| 170 | // similar to what you do with TEST_F.
|
---|
| 171 | TYPED_TEST_P(PrimeTableTest2, ReturnsFalseForNonPrimes) {
|
---|
| 172 | EXPECT_FALSE(this->table_->IsPrime(-5));
|
---|
| 173 | EXPECT_FALSE(this->table_->IsPrime(0));
|
---|
| 174 | EXPECT_FALSE(this->table_->IsPrime(1));
|
---|
| 175 | EXPECT_FALSE(this->table_->IsPrime(4));
|
---|
| 176 | EXPECT_FALSE(this->table_->IsPrime(6));
|
---|
| 177 | EXPECT_FALSE(this->table_->IsPrime(100));
|
---|
| 178 | }
|
---|
| 179 |
|
---|
| 180 | TYPED_TEST_P(PrimeTableTest2, ReturnsTrueForPrimes) {
|
---|
| 181 | EXPECT_TRUE(this->table_->IsPrime(2));
|
---|
| 182 | EXPECT_TRUE(this->table_->IsPrime(3));
|
---|
| 183 | EXPECT_TRUE(this->table_->IsPrime(5));
|
---|
| 184 | EXPECT_TRUE(this->table_->IsPrime(7));
|
---|
| 185 | EXPECT_TRUE(this->table_->IsPrime(11));
|
---|
| 186 | EXPECT_TRUE(this->table_->IsPrime(131));
|
---|
| 187 | }
|
---|
| 188 |
|
---|
| 189 | TYPED_TEST_P(PrimeTableTest2, CanGetNextPrime) {
|
---|
| 190 | EXPECT_EQ(2, this->table_->GetNextPrime(0));
|
---|
| 191 | EXPECT_EQ(3, this->table_->GetNextPrime(2));
|
---|
| 192 | EXPECT_EQ(5, this->table_->GetNextPrime(3));
|
---|
| 193 | EXPECT_EQ(7, this->table_->GetNextPrime(5));
|
---|
| 194 | EXPECT_EQ(11, this->table_->GetNextPrime(7));
|
---|
| 195 | EXPECT_EQ(131, this->table_->GetNextPrime(128));
|
---|
| 196 | }
|
---|
| 197 |
|
---|
| 198 | // Type-parameterized tests involve one extra step: you have to
|
---|
| 199 | // enumerate the tests you defined:
|
---|
| 200 | REGISTER_TYPED_TEST_CASE_P(
|
---|
| 201 | PrimeTableTest2, // The first argument is the test case name.
|
---|
| 202 | // The rest of the arguments are the test names.
|
---|
| 203 | ReturnsFalseForNonPrimes, ReturnsTrueForPrimes, CanGetNextPrime);
|
---|
| 204 |
|
---|
| 205 | // At this point the test pattern is done. However, you don't have
|
---|
| 206 | // any real test yet as you haven't said which types you want to run
|
---|
| 207 | // the tests with.
|
---|
| 208 |
|
---|
| 209 | // To turn the abstract test pattern into real tests, you instantiate
|
---|
| 210 | // it with a list of types. Usually the test pattern will be defined
|
---|
| 211 | // in a .h file, and anyone can #include and instantiate it. You can
|
---|
| 212 | // even instantiate it more than once in the same program. To tell
|
---|
| 213 | // different instances apart, you give each of them a name, which will
|
---|
| 214 | // become part of the test case name and can be used in test filters.
|
---|
| 215 |
|
---|
| 216 | // The list of types we want to test. Note that it doesn't have to be
|
---|
| 217 | // defined at the time we write the TYPED_TEST_P()s.
|
---|
| 218 | typedef Types<OnTheFlyPrimeTable, PreCalculatedPrimeTable>
|
---|
| 219 | PrimeTableImplementations;
|
---|
| 220 | INSTANTIATE_TYPED_TEST_CASE_P(OnTheFlyAndPreCalculated, // Instance name
|
---|
| 221 | PrimeTableTest2, // Test case name
|
---|
| 222 | PrimeTableImplementations); // Type list
|
---|
| 223 |
|
---|
| 224 | #endif // GTEST_HAS_TYPED_TEST_P
|
---|