1 | // Copyright 2008 Google Inc.
|
---|
2 | // All Rights Reserved.
|
---|
3 | //
|
---|
4 | // Redistribution and use in source and binary forms, with or without
|
---|
5 | // modification, are permitted provided that the following conditions are
|
---|
6 | // met:
|
---|
7 | //
|
---|
8 | // * Redistributions of source code must retain the above copyright
|
---|
9 | // notice, this list of conditions and the following disclaimer.
|
---|
10 | // * Redistributions in binary form must reproduce the above
|
---|
11 | // copyright notice, this list of conditions and the following disclaimer
|
---|
12 | // in the documentation and/or other materials provided with the
|
---|
13 | // distribution.
|
---|
14 | // * Neither the name of Google Inc. nor the names of its
|
---|
15 | // contributors may be used to endorse or promote products derived from
|
---|
16 | // this software without specific prior written permission.
|
---|
17 | //
|
---|
18 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
---|
19 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
---|
20 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
---|
21 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
---|
22 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
---|
23 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
---|
24 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
---|
25 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
---|
26 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
---|
27 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
---|
28 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
---|
29 | //
|
---|
30 | // Author: wan@google.com (Zhanyong Wan)
|
---|
31 |
|
---|
32 | // This sample shows how to test common properties of multiple
|
---|
33 | // implementations of the same interface (aka interface tests).
|
---|
34 |
|
---|
35 | // The interface and its implementations are in this header.
|
---|
36 | #include "prime_tables.h"
|
---|
37 |
|
---|
38 | #include "gtest/gtest.h"
|
---|
39 |
|
---|
40 | // First, we define some factory functions for creating instances of
|
---|
41 | // the implementations. You may be able to skip this step if all your
|
---|
42 | // implementations can be constructed the same way.
|
---|
43 |
|
---|
44 | template <class T>
|
---|
45 | PrimeTable* CreatePrimeTable();
|
---|
46 |
|
---|
47 | template <>
|
---|
48 | PrimeTable* CreatePrimeTable<OnTheFlyPrimeTable>() {
|
---|
49 | return new OnTheFlyPrimeTable;
|
---|
50 | }
|
---|
51 |
|
---|
52 | template <>
|
---|
53 | PrimeTable* CreatePrimeTable<PreCalculatedPrimeTable>() {
|
---|
54 | return new PreCalculatedPrimeTable(10000);
|
---|
55 | }
|
---|
56 |
|
---|
57 | // Then we define a test fixture class template.
|
---|
58 | template <class T>
|
---|
59 | class PrimeTableTest : public testing::Test {
|
---|
60 | protected:
|
---|
61 | // The ctor calls the factory function to create a prime table
|
---|
62 | // implemented by T.
|
---|
63 | PrimeTableTest() : table_(CreatePrimeTable<T>()) {}
|
---|
64 |
|
---|
65 | virtual ~PrimeTableTest() { delete table_; }
|
---|
66 |
|
---|
67 | // Note that we test an implementation via the base interface
|
---|
68 | // instead of the actual implementation class. This is important
|
---|
69 | // for keeping the tests close to the real world scenario, where the
|
---|
70 | // implementation is invoked via the base interface. It avoids
|
---|
71 | // got-yas where the implementation class has a method that shadows
|
---|
72 | // a method with the same name (but slightly different argument
|
---|
73 | // types) in the base interface, for example.
|
---|
74 | PrimeTable* const table_;
|
---|
75 | };
|
---|
76 |
|
---|
77 | #if GTEST_HAS_TYPED_TEST
|
---|
78 |
|
---|
79 | using testing::Types;
|
---|
80 |
|
---|
81 | // Google Test offers two ways for reusing tests for different types.
|
---|
82 | // The first is called "typed tests". You should use it if you
|
---|
83 | // already know *all* the types you are gonna exercise when you write
|
---|
84 | // the tests.
|
---|
85 |
|
---|
86 | // To write a typed test case, first use
|
---|
87 | //
|
---|
88 | // TYPED_TEST_CASE(TestCaseName, TypeList);
|
---|
89 | //
|
---|
90 | // to declare it and specify the type parameters. As with TEST_F,
|
---|
91 | // TestCaseName must match the test fixture name.
|
---|
92 |
|
---|
93 | // The list of types we want to test.
|
---|
94 | typedef Types<OnTheFlyPrimeTable, PreCalculatedPrimeTable> Implementations;
|
---|
95 |
|
---|
96 | TYPED_TEST_CASE(PrimeTableTest, Implementations);
|
---|
97 |
|
---|
98 | // Then use TYPED_TEST(TestCaseName, TestName) to define a typed test,
|
---|
99 | // similar to TEST_F.
|
---|
100 | TYPED_TEST(PrimeTableTest, ReturnsFalseForNonPrimes) {
|
---|
101 | // Inside the test body, you can refer to the type parameter by
|
---|
102 | // TypeParam, and refer to the fixture class by TestFixture. We
|
---|
103 | // don't need them in this example.
|
---|
104 |
|
---|
105 | // Since we are in the template world, C++ requires explicitly
|
---|
106 | // writing 'this->' when referring to members of the fixture class.
|
---|
107 | // This is something you have to learn to live with.
|
---|
108 | EXPECT_FALSE(this->table_->IsPrime(-5));
|
---|
109 | EXPECT_FALSE(this->table_->IsPrime(0));
|
---|
110 | EXPECT_FALSE(this->table_->IsPrime(1));
|
---|
111 | EXPECT_FALSE(this->table_->IsPrime(4));
|
---|
112 | EXPECT_FALSE(this->table_->IsPrime(6));
|
---|
113 | EXPECT_FALSE(this->table_->IsPrime(100));
|
---|
114 | }
|
---|
115 |
|
---|
116 | TYPED_TEST(PrimeTableTest, ReturnsTrueForPrimes) {
|
---|
117 | EXPECT_TRUE(this->table_->IsPrime(2));
|
---|
118 | EXPECT_TRUE(this->table_->IsPrime(3));
|
---|
119 | EXPECT_TRUE(this->table_->IsPrime(5));
|
---|
120 | EXPECT_TRUE(this->table_->IsPrime(7));
|
---|
121 | EXPECT_TRUE(this->table_->IsPrime(11));
|
---|
122 | EXPECT_TRUE(this->table_->IsPrime(131));
|
---|
123 | }
|
---|
124 |
|
---|
125 | TYPED_TEST(PrimeTableTest, CanGetNextPrime) {
|
---|
126 | EXPECT_EQ(2, this->table_->GetNextPrime(0));
|
---|
127 | EXPECT_EQ(3, this->table_->GetNextPrime(2));
|
---|
128 | EXPECT_EQ(5, this->table_->GetNextPrime(3));
|
---|
129 | EXPECT_EQ(7, this->table_->GetNextPrime(5));
|
---|
130 | EXPECT_EQ(11, this->table_->GetNextPrime(7));
|
---|
131 | EXPECT_EQ(131, this->table_->GetNextPrime(128));
|
---|
132 | }
|
---|
133 |
|
---|
134 | // That's it! Google Test will repeat each TYPED_TEST for each type
|
---|
135 | // in the type list specified in TYPED_TEST_CASE. Sit back and be
|
---|
136 | // happy that you don't have to define them multiple times.
|
---|
137 |
|
---|
138 | #endif // GTEST_HAS_TYPED_TEST
|
---|
139 |
|
---|
140 | #if GTEST_HAS_TYPED_TEST_P
|
---|
141 |
|
---|
142 | using testing::Types;
|
---|
143 |
|
---|
144 | // Sometimes, however, you don't yet know all the types that you want
|
---|
145 | // to test when you write the tests. For example, if you are the
|
---|
146 | // author of an interface and expect other people to implement it, you
|
---|
147 | // might want to write a set of tests to make sure each implementation
|
---|
148 | // conforms to some basic requirements, but you don't know what
|
---|
149 | // implementations will be written in the future.
|
---|
150 | //
|
---|
151 | // How can you write the tests without committing to the type
|
---|
152 | // parameters? That's what "type-parameterized tests" can do for you.
|
---|
153 | // It is a bit more involved than typed tests, but in return you get a
|
---|
154 | // test pattern that can be reused in many contexts, which is a big
|
---|
155 | // win. Here's how you do it:
|
---|
156 |
|
---|
157 | // First, define a test fixture class template. Here we just reuse
|
---|
158 | // the PrimeTableTest fixture defined earlier:
|
---|
159 |
|
---|
160 | template <class T>
|
---|
161 | class PrimeTableTest2 : public PrimeTableTest<T> {
|
---|
162 | };
|
---|
163 |
|
---|
164 | // Then, declare the test case. The argument is the name of the test
|
---|
165 | // fixture, and also the name of the test case (as usual). The _P
|
---|
166 | // suffix is for "parameterized" or "pattern".
|
---|
167 | TYPED_TEST_CASE_P(PrimeTableTest2);
|
---|
168 |
|
---|
169 | // Next, use TYPED_TEST_P(TestCaseName, TestName) to define a test,
|
---|
170 | // similar to what you do with TEST_F.
|
---|
171 | TYPED_TEST_P(PrimeTableTest2, ReturnsFalseForNonPrimes) {
|
---|
172 | EXPECT_FALSE(this->table_->IsPrime(-5));
|
---|
173 | EXPECT_FALSE(this->table_->IsPrime(0));
|
---|
174 | EXPECT_FALSE(this->table_->IsPrime(1));
|
---|
175 | EXPECT_FALSE(this->table_->IsPrime(4));
|
---|
176 | EXPECT_FALSE(this->table_->IsPrime(6));
|
---|
177 | EXPECT_FALSE(this->table_->IsPrime(100));
|
---|
178 | }
|
---|
179 |
|
---|
180 | TYPED_TEST_P(PrimeTableTest2, ReturnsTrueForPrimes) {
|
---|
181 | EXPECT_TRUE(this->table_->IsPrime(2));
|
---|
182 | EXPECT_TRUE(this->table_->IsPrime(3));
|
---|
183 | EXPECT_TRUE(this->table_->IsPrime(5));
|
---|
184 | EXPECT_TRUE(this->table_->IsPrime(7));
|
---|
185 | EXPECT_TRUE(this->table_->IsPrime(11));
|
---|
186 | EXPECT_TRUE(this->table_->IsPrime(131));
|
---|
187 | }
|
---|
188 |
|
---|
189 | TYPED_TEST_P(PrimeTableTest2, CanGetNextPrime) {
|
---|
190 | EXPECT_EQ(2, this->table_->GetNextPrime(0));
|
---|
191 | EXPECT_EQ(3, this->table_->GetNextPrime(2));
|
---|
192 | EXPECT_EQ(5, this->table_->GetNextPrime(3));
|
---|
193 | EXPECT_EQ(7, this->table_->GetNextPrime(5));
|
---|
194 | EXPECT_EQ(11, this->table_->GetNextPrime(7));
|
---|
195 | EXPECT_EQ(131, this->table_->GetNextPrime(128));
|
---|
196 | }
|
---|
197 |
|
---|
198 | // Type-parameterized tests involve one extra step: you have to
|
---|
199 | // enumerate the tests you defined:
|
---|
200 | REGISTER_TYPED_TEST_CASE_P(
|
---|
201 | PrimeTableTest2, // The first argument is the test case name.
|
---|
202 | // The rest of the arguments are the test names.
|
---|
203 | ReturnsFalseForNonPrimes, ReturnsTrueForPrimes, CanGetNextPrime);
|
---|
204 |
|
---|
205 | // At this point the test pattern is done. However, you don't have
|
---|
206 | // any real test yet as you haven't said which types you want to run
|
---|
207 | // the tests with.
|
---|
208 |
|
---|
209 | // To turn the abstract test pattern into real tests, you instantiate
|
---|
210 | // it with a list of types. Usually the test pattern will be defined
|
---|
211 | // in a .h file, and anyone can #include and instantiate it. You can
|
---|
212 | // even instantiate it more than once in the same program. To tell
|
---|
213 | // different instances apart, you give each of them a name, which will
|
---|
214 | // become part of the test case name and can be used in test filters.
|
---|
215 |
|
---|
216 | // The list of types we want to test. Note that it doesn't have to be
|
---|
217 | // defined at the time we write the TYPED_TEST_P()s.
|
---|
218 | typedef Types<OnTheFlyPrimeTable, PreCalculatedPrimeTable>
|
---|
219 | PrimeTableImplementations;
|
---|
220 | INSTANTIATE_TYPED_TEST_CASE_P(OnTheFlyAndPreCalculated, // Instance name
|
---|
221 | PrimeTableTest2, // Test case name
|
---|
222 | PrimeTableImplementations); // Type list
|
---|
223 |
|
---|
224 | #endif // GTEST_HAS_TYPED_TEST_P
|
---|