source: source/ariba/utility/addressing/endpoint_set.hpp@ 5555

Last change on this file since 5555 was 5406, checked in by mies, 15 years ago
File size: 10.9 KB
RevLine 
[5284]1#ifndef ENDPOINT_SET_HPP_
2#define ENDPOINT_SET_HPP_
3
4#include "addressing.hpp"
5#include "tcpip_endpoint.hpp"
6
7#include <sstream>
8#include <boost/unordered_set.hpp>
9#include <boost/foreach.hpp>
10#include <boost/thread.hpp>
11
12namespace ariba {
13namespace addressing {
14
15using boost::unordered_set;
16
17/**
18 * This end-point set shelters known addresses of a device.
19 * Transport protocols use this class to address devices.
20 *
21 * Example of a string representation:
22 * "tcp{500|501};ip{10.11.12.13};bluetooth{01:02:03:04:05:06};rfcomm{1234}"
23 * Inside a address type specification, addresses are separated by a bar (|).
24 *
25 * @author Sebastian Mies <mies@tm.uka.de>
26 */
27class endpoint_set {
28public:
29 // layer 2
30 unordered_set<mac_address> bluetooth;
31
32 // layer 3
33 unordered_set<ip_address> ip;
34
35 // layer 4
36 unordered_set<tcp_port_address> tcp;
37 unordered_set<rfcomm_channel_address> rfcomm;
38
39 // mutex
40 boost::mutex io_mutex;
41 typedef boost::mutex::scoped_lock scoped_lock;
42
43private:
44 template<uint8_t type, class V>
45 size_t to_bytes_dynamic( const unordered_set<V>& set, uint8_t* bytes ) const {
46 size_t size = 0;
47 bytes[0] = type;
48 uint8_t* size_ptr = bytes+1;
49 bytes +=2;
50 size += 2;
51 BOOST_FOREACH( const V& value, set ) {
52 bytes[0] = (uint8_t)value.to_bytes_size();
53 bytes++;
54 size++;
55 value.to_bytes(bytes);
56 bytes += value.to_bytes_size();
57 size += value.to_bytes_size();
58 }
59 *size_ptr = size-2;
60 return size;
61 }
62
63 template<class V>
64 void from_bytes_dynamic( unordered_set<V>& set, const uint8_t* bytes, uint8_t size ) {
65 size_t pos = 0;
66 while (pos < size) {
67 uint8_t length = bytes[0];
68 bytes++; pos++;
69 V obj(bytes,length);
70 set.insert(obj);
71 bytes+=length; pos+=length;
72 }
73 }
74
75 template<uint8_t type, class V>
76 size_t to_bytes_fixed( const unordered_set<V>& set, uint8_t* bytes ) const {
77 size_t fixed_size = V().to_bytes_size();
78 bytes[0] = type;
79 bytes[1] = (uint8_t)(set.size()* fixed_size);
80 bytes+=2;
81 BOOST_FOREACH( const V& value, set ) {
82 value.to_bytes(bytes);
83 bytes += value.to_bytes_size();
84 }
85 return 2 + set.size() * fixed_size;
86 }
87
88 template<class V>
89 void from_bytes_fixed( unordered_set<V>& set, const uint8_t* bytes, uint8_t size ) {
90 size_t fixed_size = V().to_bytes_size();
91 uint8_t num = size/fixed_size;
92 for (uint8_t i=0; i<num; i++) {
93 V obj(bytes, fixed_size);
94 set.insert(obj);
95 bytes += fixed_size;
96 }
97 }
98
99 template<class V>
100 std::string to_string_set( const unordered_set<V>& set, const std::string& type ) const {
101 if (set.size()==0) return std::string("");
102 std::ostringstream buf;
103 buf << type << "{";
104 bool first = true;
105 BOOST_FOREACH( const V& value, set ) {
106 if (!first) {
107 buf << " | ";
108 } else
109 first = false;
110 buf << value.to_string();
111 }
112 buf << "};";
113 return buf.str();
114 }
115
116 static void trim(string& str) {
117 string::size_type pos = str.find_last_not_of(' ');
118 if(pos != string::npos) {
119 str.erase(pos + 1);
120 pos = str.find_first_not_of(' ');
121 if(pos != string::npos) str.erase(0, pos);
122 }
123 else str.erase(str.begin(), str.end());
124 }
125
126 static string::size_type skip( const char* chars, string::size_type pos, const std::string& str ) {
127 bool found = true;
128 while (pos<str.size() && found) {
129 found = false;
130 for (size_t i=0; chars[i]!=0 && !found; i++)
131 if (str.at(pos)==chars[i]) {
132 pos++;
133 found = true;
134 }
135 }
136 return pos;
137 }
138
139 template<class V>
140 size_t from_string_set( unordered_set<V>& set, string::size_type pos, const std::string& str ) {
141 while (pos < str.size() && pos != string::npos) {
142 pos = skip("} |\n\r", pos, str);
143 string::size_type nend1 = str.find('}',pos);
144 string::size_type nend2 = str.find('|',pos);
145 if (nend1==string::npos && nend2==string::npos) break;
146 if (nend1==string::npos) nend1=str.size();
147 if (nend2==string::npos) nend2=str.size();
148 string::size_type nend = nend2 < nend1 ? nend2:nend1;
149 std::string sub = str.substr(pos, min(nend2,nend1)-pos);
150 trim(sub);
151// cout << sub << endl;
152 V obj( sub );
153 set.insert(obj);
154 pos = nend+1;
155 if (nend1<nend2) break;
156 }
157 return pos-1;
158 }
159
160public:
161 enum layers {
162 Layer1 = 1, Layer2 = 2, Layer3 = 4, Layer4 = 8, Layer5 = 16,
163 Layer6 = 32, Layer7 = 64, Layer8 = 128, AllLayers = ~0,
164 Layer1_3 = Layer1|Layer2|Layer3,
165 Layer1_4 = Layer1|Layer2|Layer3|Layer4,
166 };
167
168 endpoint_set() {
169
170 }
171
172 endpoint_set( const endpoint_set& copy ) :
173 bluetooth(copy.bluetooth), ip(copy.ip), tcp(copy.tcp), rfcomm(copy.rfcomm) {
174 }
175
176 endpoint_set( const std::string& str ) {
177 assign(str);
178 }
179
180 endpoint_set( const uint8_t* bytes, size_t size ) {
181 assign(bytes, size);
182 }
183
184 /// adds an address or endpoint to this set
185 void add( const address_v* address, int layers = AllLayers ) {
186 scoped_lock lock(io_mutex);
187 if ( address->instanceof<tcpip_endpoint> () ) {
188 const tcpip_endpoint& addr = *address;
189 if (layers & Layer3) ip.insert( addr.address() );
190 if (layers & Layer4) tcp.insert( addr.port() );
191 } else
192 if ( address->instanceof<ip_address>() ) {
193 const ip_address& addr = *address;
194 if (layers & Layer3) ip.insert( addr );
195 } else
196 if (address->instanceof<rfcomm_endpoint>() ) {
197 const rfcomm_endpoint& endp = *address;
198 if (layers & Layer2) bluetooth.insert( endp.mac() );
199 if (layers & Layer4) rfcomm.insert( endp.channel() );
200 } else
201 if (address->instanceof<mac_address>() ) {
202 const mac_address& endp = *address;
203 if (layers & Layer2) bluetooth.insert( endp );
204 }
205 }
206
207 /// adds addresses from another endpoint set
208 void add( const endpoint_set& eps, int layers = AllLayers ) {
209 scoped_lock lock(io_mutex);
210
211 // merge layer 2 addresses
212 if (layers & Layer2) {
213 bluetooth.insert(eps.bluetooth.begin(), eps.bluetooth.end() );
214 }
215
216 // merge layer 3 addresses
217 if (layers & Layer3) {
218 ip.insert(eps.ip.begin(), eps.ip.end() );
219 }
220
221 // merge layer 4 addresses
222 if (layers & Layer4) {
223 tcp.insert(eps.tcp.begin(), eps.tcp.end() );
224 rfcomm.insert(eps.rfcomm.begin(), eps.rfcomm.end() );
225 }
226 }
227
228 /// removes an address or endpoint from this set
229 void remove( const address_vf address ) {
230 scoped_lock lock(io_mutex);
231 if ( address->instanceof<tcpip_endpoint> () ) {
232 const tcpip_endpoint& addr = *address;
233 ip.erase( addr.address() );
234 tcp.erase( addr.port() );
235 } else
236 if ( address->instanceof<ip_address>() ) {
237 const ip_address& addr = *address;
238 ip.erase( addr );
239 } else
240 if (address->instanceof<rfcomm_endpoint>() ) {
241 const rfcomm_endpoint& endp = *address;
242 bluetooth.erase( endp.mac() );
243 rfcomm.erase( endp.channel() );
244 }
245 }
246
247 /// checks whether two end-points are disjoint
248 /// (only check lower level addresses)
[5406]249 bool disjoint_to( const endpoint_set& set ) const {
[5284]250 scoped_lock lock(const_cast<boost::mutex&>(io_mutex));
251 BOOST_FOREACH( const mac_address& mac, bluetooth )
252 if (set.bluetooth.count(mac) !=0 ) return false;
253 BOOST_FOREACH( const ip_address& ip_, ip )
254 if (set.ip.count(ip_) !=0 ) return false;
255 return true;
256 }
257
[5406]258 bool intersects_with( const endpoint_set& set ) const {
259 return !disjoint_to(set);
260 }
261
262 bool is_subset_of( const endpoint_set& set ) const {
263 throw "Not implemented!";
264 return false;
265 }
266
[5284]267 /// returns true, if this address has a fixed size in bytes
268 bool is_bytes_size_static() const {
269 return false;
270 }
271
272 /// returns the number of bytes used for serialization of this address
273 size_t to_bytes_size() const {
274 scoped_lock lock(const_cast<boost::mutex&>(io_mutex));
275 size_t size = 0;
276
277 // bluetooth mac list (layer 2)
278 size += bluetooth.size() * mac_address().to_bytes_size();
279
280 // ip list (layer 3)
281 BOOST_FOREACH( const ip_address& ip_, ip )
282 size += (ip_.to_bytes_size() + 1 /* =length */);
283
284 // tcp ports (layer 4)
285 size += tcp.size() * tcp_port_address().to_bytes_size();
286
287 // bluetooth rfcomm channels (layer 4)
288 size += rfcomm.size() * rfcomm_channel_address().to_bytes_size();
289
290 // length/type encoding
291 size += 4 /* number of items*/ * 2 /* length of type and length */;
292
293 return size;
294 }
295
296 /// converts this address to a binary representation
297 void to_bytes(uint8_t* bytes) const {
298 scoped_lock lock(const_cast<boost::mutex&>(io_mutex));
299
300 /// bluetooth mac list (layer 2)
301 bytes += to_bytes_fixed<0x21, mac_address>( bluetooth, bytes );
302
303 // ip list (layer 3)
304 bytes += to_bytes_dynamic<0x31, ip_address>(ip, bytes);
305
306 // tcp ports (layer 4)
307 bytes += to_bytes_fixed<0x41, tcp_port_address>( tcp, bytes );
308
309 // rfcomm channels (layer 4)
310 bytes += to_bytes_fixed<0x42, rfcomm_channel_address>( rfcomm, bytes );
311 }
312
313 /// Assigns an address using a bunch of bytes
314 bool assign(const uint8_t* bytes, size_t size) {
315 scoped_lock lock(io_mutex);
316
317 size_t pos = 0;
318 while (pos < size) {
319 uint8_t type = bytes[0];
320 uint8_t length = bytes[1];
321 bytes+=2; pos+=2;
322
323 switch (type) {
324
325 // bluetooth mac
326 case 0x21: {
327 from_bytes_fixed<mac_address>( bluetooth, bytes, length );
328 break;
329 }
330
331 // ip
332 case 0x31: {
333 from_bytes_dynamic<ip_address>( ip, bytes, length );
334 break;
335 }
336 // tcp
337 case 0x41: {
338 from_bytes_fixed<tcp_port_address>( tcp, bytes, length );
339 break;
340 }
341 // rfcomm
342 case 0x42: {
343 from_bytes_fixed<rfcomm_channel_address>( rfcomm, bytes, length );
344 break;
345 }
346
347 default: {
348 pos = size;
349 break;
350 }
351 }
352 bytes += length; pos+=length;
353 }
354 return false;
355 }
356
357 /// generates a string out of this endpoint-set
358 std::string to_string() const {
359 scoped_lock lock(const_cast<boost::mutex&>(io_mutex));
360 std::string smac = to_string_set<mac_address>(bluetooth, "bluetooth");
361 std::string sip = to_string_set<ip_address>(ip, "ip");
362 std::string stcp = to_string_set<tcp_port_address>(tcp, "tcp");
363 std::string srfcomm = to_string_set<rfcomm_channel_address>(rfcomm, "rfcomm");
364 return smac+sip+stcp+srfcomm;
365 }
366
367 /// assigns an endpoint-set out of a string
368 void assign( const std::string& str ) {
369 scoped_lock lock(io_mutex);
370 string::size_type pos = 0;
371 while (pos < str.size() && pos!=string::npos) {
372 pos = skip("}; \n\r", pos, str );
373 string::size_type nend = str.find('{',pos);
374 if (nend == string::npos) break;
375 std::string type = str.substr(pos,nend-pos);
376 pos = nend+1;
377 trim(type);
378 if (type=="bluetooth")
379 pos = from_string_set<mac_address>(bluetooth, pos, str );
380 else if (type=="ip")
381 pos = from_string_set<ip_address>(ip, pos, str );
382 else if (type=="tcp")
383 pos = from_string_set<tcp_port_address>(tcp, pos, str );
384 else if (type=="rfcomm")
385 pos = from_string_set<rfcomm_channel_address>(rfcomm, pos, str );
386 else
387 pos = str.find('}',pos);
388 }
389 }
390
391 endpoint_set& operator=( const endpoint_set& rhs ) {
392 scoped_lock lock(io_mutex);
393 this->bluetooth = rhs.bluetooth;
394 this->ip = rhs.ip;
395 this->rfcomm = rhs.rfcomm;
396 this->tcp = rhs.tcp;
397 }
[5406]398
399 /// checks wheter the two endpoint sets are identical
400 bool operator== ( const endpoint_set& rhs ) const {
401 return (rhs.rfcomm == rfcomm && rhs.ip == ip && rhs.tcp == tcp &&
402 rhs.bluetooth == bluetooth);
403 }
404
405 bool operator!= ( const endpoint_set& rhs ) const {
406 return !(*this==rhs);
407 }
[5284]408};
409
410}} // namespace ariba::addressing
411
412#endif /* ENDPOINT_SET_HPP_ */
Note: See TracBrowser for help on using the repository browser.